150989 (621523), страница 3

Файл №621523 150989 (Тепловое расширение тел) 3 страница150989 (621523) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Щоб усі молекули були в стані стійкої рівноваги, треба, щоб кожна з них була розміщена однаково відносно інших молекул. Це означає, що біля кожної молекули має бути та сама кількість однаково розміщених молекул. На мал. 1, а кожна молекула (наприклад, молекула 0) має чотирьох найближчих сусідів (1, 2, 3 і 4), а на мал. 1, б – шістьох найближчих сусідів.

У чні приходять до висновку, що в твердому тілі частинки розміщуються в певному порядку, тоді як у рідині і газі такого порядку немає. Під час тверднення рідини частинки стрибкоподібно переходять від хаотичного до впорядкованого розміщення. Процес супроводиться зменшенням потенціальної енергії взаємодії частинок: адже кожна з них переходить у положення, де потенціальна енергія мінімальна.

Мал. 1. Розташування молекул в речовині.

Залишити ці місця вони можуть тільки тоді, коли зовнішня сила виконає певну роботу. Саме тому тверді тіла й зберігають свою форму.

Далі пояснюють, що правильно розміщені частинки твердого тіла (молекули, іони, атоми) утворюють кристалічну (просторову) решітку. Точки в кристалічній решітці, які відповідають стійкому положенню рівноваги частинок, називають вузлами решітки. Важливо показати, що правильне розміщення вузлів решітки всередині кристала періодично повторюється. Це означає, що коли на якійсь прямій відстань між найближчими вузлами дорівнює а (мал. 2), то на відстані па від першого вузла на цій самій прямій у кристалічній решітці лежить такий самий п-й вузол. Правильне розміщення частинок у вузлах решітки кристала називають далеким порядком.

Мал. 2.

Учні повинні зрозуміти, що головною ознакою твердого тіла є його кристалічна структура, або, інакше кажучи, у твердого тіла обов'язково повинен бути дальній порядок розміщення частинок.

При викладанні будови кристалів потрібно пояснити характеру руху молекул у твердих тілах. Той факт, що в твердому тілі кожна частинка розміщена в певному місці – у вузлі кристалічної решітки, - не означає, що частинки в твердих тілах нерухомі. Частинки в твердому тілі також хаотично рухаються, а середня їх кінетична енергія визначає температуру тіла. Однак теплові рухи частинок твердого тіла не такі вільні, як у газах чи навіть у рідинах. У твердому тілі частинки здійснюють малі порівняно з відстанями між ними хаотичні коливання в усіх можливих площинах навколо вузлів кристалічної решітки. З підвищенням температури амплітуда цих коливань зростає.

За певних умов утворення кристалів упорядковане розміщення частинок веде до того, що зовнішня форма кристала буде правильною: кристал має форму багатогранника, обмеженого гладенькими плоскими гранями. Таку форму мають багато природних кристалів. Доцільно роздати учням зразки різних кристалів і запропонувати розглянути їх крізь лупу. Зразки кристалів можна отримати у шкільному кабінеті хімії та географії або ж виростити самотужки. Можна виростити кристали кухонної солі, гіпсу сульфату міді. Слід підкреслити, що в кристалів кожної речовини кути між гранями завжди мають цілком певне значення. Вимірявши ці кути в одного кристала, ми тим самим знатимемо, що всі інші кристали цієї ж речовини мають такі самі кути, хоч кристали можуть мати різний зовнішній вигляд.

Далі вводять поняття про монокристал і полікристалічну будову твердих тіл. Приклади монокристалів: гір­ський кришталь, алмаз, рубін, топаз, гранат. Приклади полікристалів: усі метали й сплави, більшість природних кристалічних тіл. Бажано, щоб учні розглянули крізь лупу полікристалічну структуру металу на свіжому зламі цинкової пластинки.

Треба підкреслити, що сучасна техніка ставить дуже високі вимоги до чистоти кристалів, якої природа не може забезпечити. Для цього кристали вирощують в умовах повної герметичності, старанно оберігають їх від пилинок і вологи, найменших коливань температури. Інакше порушиться чітка схема розміщення атомів у кристалічній решітці. Кристали «зріють» у герметичних скляних ємкостях, заповнених розчином тієї чи іншої хімічної сполуки. Вода поступово випаровується, розчин перенасичується і молекули майбутнього кристала осідають на тоненьку пластинку.

На основі дослідження процесів утворення кристалів опрацьовано методи вирощування великих монокриста­лів, які дають можливість у лабораторних або промислових умовах діставати зразки з лінійними розмірами в десятки сантиметрів. У світі налагоджено виробництво штучних алмазів, рубінів, ізумрудів, сапфірів, аметистів, кварцу тощо. В Україні цим займається Інститут кристалохімії НАН України. Штучно вирощені алмази твердіші від природних; їх успішно застосовують у промисловості. Синтезовано також такі надтверді кристали, як боразон (кубічний нітрид бору), кубоніт, фіаніт тощо, які іноді використовуються у якості дорогоцінних у ювелірній промисловості.

Найхарактернішою особливістю монокристалів є анізотропія властивостей – їх залежність від певного напряму. На уроці слід продемонструвати хоча б один з випадків анізотропії, зокрема анізотропію міцності, оскільки вона притаманна майже всім кристалам. Розколюючи досить великі кубічні кристали кухонної солі, дістають дрібні осколки переважно у вигляді прямокутних паралелепіпедів. Це означає, що в напрямах, паралельних граням, міцність кристала кухонної солі значно нижча, ніж у діагональних та інших напрямах. Слюду легко розщепити на пластинки, але важко розірвати окремі пластинки в напрямі, перпендикулярному до пластинки. Це також свідчить про неоднакову міцність слюди в різних напрямах. Бажано, щоб ці досліди зміг виконати кожний учень на своєму робочому столі. На підставі дослідів роблять висновок, що в різних напрямах міцність кристалів неоднакова. Це прояв анізотропії механічних властивостей кристала.

Анізотропію теплопровідності ілюструють плавленням парафіну або воску, нанесених на поверхню пластинки, вирізаної з кристала кварцу або гіпсу. Якщо торкнутись гарячою голкою до кварцової або гіпсової пластинок, то поверхня, на якій плавиться парафін, матиме вигляд овала, а скляної – вигляд круга.

Особливо цікавою є анізотропія росту кристалів. Якщо взяти досить великий кристал, наприклад кристал галуна, спиляти його вершини, а потім, обв'язавши кристал ниткою, відзначити вузликами попередні положення вершин і помістити в перенасичений розчин галуна, то побачимо, що кристал відновить свою попередню форму: на місцях спиляних вершин утворяться нові вершини. Отже, кристал росте неоднаково в різних напрямах.

Пояснюють, що анізотропія властивостей – наслідок упорядкованого розміщення частинок у кристалах. Анізотропія буває лише в монокристалів. Більшість твердих тіл – полікристали. Кожному монокристалику, що входить до складу полікристала, властива анізотропія тих чи інших властивостей. Але оскільки всі вони зрослися в повному безпорядку, то в полікристалах переважаючого напряму немає. Тому полікристалічні тіла ізотропні, тобто їхні властивості однакові в усіх напрямах, хоч кожний окремий кристалик – анізотропний. Те, що полікристали складаються з безлічі зерен – кристаликів, слід показати на зламі цинкової пластинки.

Серед тіл, які зберігають свій об'єм (як рідини) і форму, є й такі, що перебувають не в кристалічному, а в аморфному стані. Скло, клей, віск, парафін, пластилін, асфальт, різні смоли, янтар, багато пластмас – приклади речовин в аморфному стані. Під зовнішнім впливом аморфні тіла проявляють одночасно пружні властивості (як тверді тіла) і текучість (як рідини). У випадку короткочасної дії (удару) вони поводять­ся як тверді тіла і від сильного удару розколюються на частини. Якщо ця дія тривала, то аморфні тіла «течуть».

Так, наприклад, грудка смоли поступово розтікається на твердій поверхні. Аморфні тіла ізотропні, тобто їхні властивості однакові в усіх напрямах.

Аморфні тіла не мають певних температур плавлен­ня і тверднення. З твердого стану в рідкий вони переходять, поступово розм'якшуючись, а з рідкого в твердий, - поступово тужавіючи. Для аморфних тіл немає такої температури, вище від якої речовина була б у рідкому стані, а нижче – в твердому.

Звертають увагу учнів, що в аморфних тілах розміщення частинок має близький порядок. Частинки аморфних тіл у твердому стані розміщені так само хаотично, як і в рідкому. Рідина й аморфне тіло відрізняються одне від одного лише ступенем рухливості частинок - часом їхнього «осілого життя». Під час тверднення аморфної речовини кінетична енергія хаотичних рухів частинок поступово зменшується, але їхня потенціальна енергія стрибкоподібно не зменшується. Внутрішня енергія речовини в аморфному стані трохи більша, ніж у кристалічному, бо впорядкованому розміщенню середніх положень частинок у положеннях рівноваги відповідає найменша потенціальна енергія частинок. Тому можливий самовільний перехід речовини з аморфного стану в кристалічний.

Учні мають бути підведені до розуміння того, що частинки аморфних тіл у твердому стані коливаються, аналогічно частинкам у рідинах, навколо хаотично розміщених вузлів. Однак частинки аморфного тіла з одного положення рівноваги в інше переміщаються через такі великі проміжки часу, що практично аморфні тіла є твердими тілами.

Після цього можна пояснити різницю в характері плавлення кристалічних і аморфних речовий. Для перетворення речовини з твердого кристалічного стану в рідкий необхідно зруйнувати впорядкованість у розміщенні частинок тіла. Для цього має бути витрачена енергія, яку тіло дістає у вигляді так званої теплоти плавлення. При температурі плавлення за рахунок цієї енергії змінюється характер хаотичного руху частинок кристалічного тіла. Частішають їх стрибки з одного положення рівноваги в інше і порушується порядок розміщення. Такий процес саме і є переходом тіла з кристалічного стану в рідкий (аморфний). При переході речовини з кристалічного стану в рідкий стрибкоподібно збільшується потенціальна енергія атомів і молекул.

На основі отриманого раніше матеріалу вводиться поняття теплового розширення тіл. Учням пояснюється, що як для кристалічних тіл так і для аморфних тіл характерним є теплове розширення, яке можна пояснити так: при нагріванні амплітуда коливань частинок у вузлах решітки буде зростати і за рахунок цього зростають лінійні розміри тіла. Таке пояснення можна дати і зростанню об’єму тіла при нагрівання.

Для характеристики теплового розширення тіл використовується коефіцієнт теплового розширення твердих тіл :

,

.

Введення цих коефіцієнтів можна закріпити демонстрацією вимірювання коефіцієнта теплового розширення наприклад води, в хімічних циліндр (або капіляр чи трубку) наливають гарячу воду, термометром вимірюють температуру води. При охолодженні води її об’єм зменшиться. Зменшення об’єму модна визначити і розрахувати коефіцієнт теплового розширення води:

Початковий об’єм води рівний: , тоді .

Тоді підставивши отримані формули ми одержимо:

Отримане значення коефіцієнта об’ємного теплового розширення потрібно порівняти із табличним значенням його.

Для розмірів твердого тіла при нагріванні можна записати рівність: . А для об’ємного розширення: . При введенні даних формул потрібно користуватися аналогією із формулою для температурної залежності питомого опору від температури: , де - у даному випадку температурний коефіцієнт опору. Дані формули аналогічні. Введені формули потрібно закріпити розв’язком завдань.

Висновок.

Вивчення фізики має на меті формування спеціаліста в точних науках, інженера, фізика, хіміка. Для цього слугує поглиблений, або як його ще називають профільний курс фізики. У профільний курс фізики входить достатньо багато питань, які не розглядаються у стандартному курсі, або ж розглядаються досить поверхово. Одним із таких питань є теплове розширення тіл. Слід відмітити, що раніше, за часів СРСР теплове розширення тіл вивчалося у стандартному курсі фізики. Але в наш час воно із стандартного курсу виключене.

У роботі було розглянуто методику викладання теплового розширення твердих тіл у класах із поглибленим вивченням фізики, було розглянуто також питання, які частково відносяться до теплового розширення тіл та використовуються для пояснення даного фізичного явища. Результати розгляду даного питання викладено у вигляді планів-конспектів уроків.

Характеристики

Тип файла
Документ
Размер
2,21 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7013
Авторов
на СтудИзбе
261
Средний доход
с одного платного файла
Обучение Подробнее