150912 (621497), страница 2

Файл №621497 150912 (Современная научно-техническая документация на статистические методы анализа результатов измерений) 2 страница150912 (621497) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Если случайные погрешности представлены несколькими СКО Si , то СКО результата однократного измерения S(A) вычисляют по формуле:

  1. Учитывая то, что погрешности представлены несколькими СКО, тогда стандартную неопределенность результата однократного измерения UA вычисляют по формуле:

Где m - число составляющих случайных погрешностей;

UiA = Si.

Доверительную границу случайной погрешности измерения е(P) вычисляют по формуле

где ZP/2 – P/2 точка нормированной функции Лапласа, отвечающая вероятности P .При доверительной вероятности P = 0,95 Z095/2 принимают равным 2, при P=0,99 Z0,99/2=2,6 .

Если случайные погрешности представлены доверительными границами еi(P), соответствующими одной и той же вероятности, доверительную границу случайной погрешности результата однократного измерения вычисляют по формуле:

    1. Если случайные погрешности представлены доверительными границами, соответствующими разным вероятностям, сначала определяют СКО измерения по формуле:

А затем вычисляют доверительные границы случайной погрешности результата измерения по формуле

Оценивание неисключенной систематической погрешности и стандартной неопределенности, оцениваемой по типу В, результата измерения.

При условии, когда неисключенная систематическая погрешность (НСП) выражена границами этой погрешности и если среди составляющих погрешности результата измерения в наличии одна НСП, то стандартную неопределенность UB, обусловленную неисключенной систематической погрешностью, заданной своими границами ± И оценивают по формуле:

Доверительные границы НСП результата измерения вычисляют следующим образом:

1.5. Доверительную границу НСП результата измерения (без учета знака) при наличии нескольких НСП, заданных своими границами , доверительную границу НСП результата измерения (без учета знака) вычисляют по формуле

где k – поправочный коэффициент, определяемый принятой доверительной вероятностью и числом m составляющих

При доверительной вероятности Р =0,95 поправочный коэффициент k принимают равным 1,1.

При доверительной вероятности Р = 0,99 поправочный коэффициент k принимают равным 1,45, если число суммируемых составляющих m

Если число составляющих равно четырем (m = 4), то поправочный коэффициент k ≈ 1,4; при m = 3 k ≈ 1,3; при m = 2 k ≈ 1,2.

Суммарную стандартную неопределенность Uc,B (при условии, указанном выше в п. 1.1) вычисляют по формуле

  1. 6. При наличии нескольких НСП, заданных доверительными границами рассчитанными по формуле п.1,1. доверительную границу НСП результата однократного измерения вычисляют по формуле

Суммарную стандартную неопределенность с учетом условий, указанных выше, вычисляют по формуле

где − доверительная граница j − й НСП, соответствующая доверительной вероятности Рi;

k и ki − коэффициенты, соответствующие доверительной вероятности Р и Рi

Оценивание погрешности и расширенной неопределенности результата измерения.

  1. 7. Если погрешности метода измерения и оператора пренебрежимо малы по сравнению с погрешностью используемых СИ (не превышает 15% погрешности СИ), то за погрешность результата измерения принимают погрешность используемых СИ.

1.8. Если то НСП или стандартной неопределенностью, оцениваемой по типу В, пренебрегают и принимают в качестве погрешности или неопределенности результата измерения доверительные границы случайной погрешности или расширенную неопределенность для уровня доверия Р, вычисляемую по формуле

Если то случайными погрешностями или стандартной неопределенностью, оцениваемой по типу А, пренебрегают и принимают в качестве погрешности или неопределенности результата измерения границы НСП или расширенную неопределенность для уровня доверия Р, вычисляемую по формуле

1.9. Если то доверительную границу погрешности результата измерений ∆Р вычисляют по формуле

где К – коэффициент , значение которого для доверительной вероятности 0,95 равно 0,76; для доверительной вероятности 0,99 значение коэффициента К равно 0,83.

Расширенную неопределенность для уровня доверия Р вычисляют по формуле

где к0 коэффициент охвата (коэффициент, используемый как множитель суммарной неопределенности для получения расширенной неопределенности). Значения коэффициента охвата для доверительной вероятности Р = 0,95 считают равным 2, для доверительной вероятности Р = 0,99 − равным 3.

1.10. Форма представления результатов однократных измерений должна соответствовать МИ1317.

1.11. При симметричной доверительной погрешности результата однократного измерения представляют в форме A;± ∆(P); P или A± ∆(P), или A; U(P).

4. Метод обработки результатов прямых измерений с многократным наблюдением

Метод обработки результатов прямых измерений с многократным наблюдениями заключается в следующем. В основе любого измерения лежат прямые измерения, в ходе которых находят некоторое числовое значение физической величины. С математической точки зрения прямое измерение можно выразить уравнением, которое имеет вид:

y = cx

где y – значение исследуемой величины;

с – цена деления шкалы прибора в единицах измеряемой величины;

x – отсчет по индикаторному устройству в делениях шкалы.

Каждая измерительная операция (отсчет, замер) называется наблюдением.

Теоретически, для достижения более точных значений погрешностей измерений, необходимо провести бесконечное число наблюдений, что нереально. На практике ограничиваются конечным числом наблюдений (от единицы до нескольких десятков или сотен). Полученный при этом ряд значений физической величины x1 , x2, x3…xi называют выборкой, а

R = xmax – xmin − размахом выборки.

Методы обработки результатов прямых измерений с многократными

После проведения измерений и получения результатов этих измерений необходимо:

Устранить из выборки очевидные промахи, т. е. вид грубой погрешности, зависящий от оператора и связанный с неправильным обращением со средством измерения: неверными отсчетами показаний приборов, описками при записи результатов, невнимательностью экспериментатора и т. п.

Промахи обнаруживают нестатистическими методами; и результаты наблюдений, содержащие промахи, как заведомо неправильные исключают из рассмотрения.

Исключить из результатов наблюдений систематические погрешности, являющиеся составляющими погрешности измерения и остающимися постоянной или закономерно меняющимися при повторных измерениях.

Упорядочить выборку в порядке возрастания ее элементов x↑I

Провести проверку выборки на наличие грубых погрешностей и ее связанность по размаху выборки

при i=1……………n-1

и проверить, содержит ли крайний элемент грубую погрешность.

Грубые погрешности крайних элементов из рассмотрения исключить.

Если выборка не является связной – эксперимент необходимо повторить.

Результат измерения и оценка его среднего квадратического отклонения.

После исключения грубых погрешностей из результатов измерений вычисляется среднеарифметическое исправленных результатов наблюдений. Эта величина принимается за результат измерения.

где n – число исправленных наблюдений.

Если во всех результатах наблюдений содержится постоянная систематическая погрешность, допускается ее исключать, но после вычисления среднего арифметического исправленных результатов измерений.

Вычисляется оценка среднего квадратического отклонения результатов измерения по формуле

Эта величина позволяет проверить, не являются ли некоторые сомнительные результаты наблюдений ошибочными.

Если окажется, что сомнительные значения отличаются от вычисленной величины больше, чем на три, то их следует исключить.

Вычисляется и оценивается среднее квадратическое отклонение результата измерения по формуле

где − оценка среднего квадратического отклонения результатов измерения.

Определение доверительных границ случайной погрешности результата измерения.

Доверительные границы случайной погрешности результата измерения в соответствии с требованиями ГОСТ 8. 207 – 76 устанавливают для результатов наблюдений, принадлежащих нормальному распределению.

Если это условие не выполняется, методы вычисления доверительных границ случайной погрешности должны быть указаны в методике выполнения конкретных измерений.

Проверку гипотезы о том, что результаты наблюдений принадлежат нормальному распределению, следует проводить с уровнем значимости q от 10 о 2%. Конкретные значения уровней значимости должны быть указаны в конкретной методике выполнения измерений.

Для определения доверительных границ погрешности результата измерения доверительную вероятность Р принимают равной 0,95.

В тех случаях, когда измерение нельзя повторить, помимо границ, соответствующих доверительной вероятности Р = 0,95, допускается указывать границы для доверительной вероятности Р = 0,99.

При числе результатов наблюдений для проверки принадлежности их к нормальному распределению используется один из критериев К. Пирсона или щ2 Мизеса – Смирнова.

При числе результатов наблюдений 50 > n >16 для проверки принадлежности их к нормальному распределению предпочтительным является составной критерий.

При числе результатов наблюдений n < 50 нормальность их распределения проверяют при помощи составного критерия.

Критерий 1. Вычисляют отношение

где − смещенная оценка среднего квадратического отклонения, вычисленного по формуле

Результаты наблюдений группы можно считать распределенными нормально, если

где квантели распределения, которые берутся из таблицы 1 (ГОСТ 8. 207 – 76 , приложение 1) по n, и

q1 − заранее выбранный уровень значимости критерия.

Критерий 2. Можно считать, что результаты наблюдений принадлежат нормальному распределению, если не более m разностей превзошли значение

где S − оценка среднего квадратического отклонения, вычисляемая по формуле

где − верхняя квантиль распределения нормированной функции Лапласа, отвечающая вероятности .

Значения Р определяются из таблицы 2 (ГОСТ 8. 207 – 76 приложение 1) и числу результатов наблюдений n.

При разных принимаемых уровнях значимости q для критериев 1 и 2, то уровень значимости составного критерия равен сумме частных уровней значимости.

В случае, если хотя бы один из критериев не соблюдается, то считают, что распределение результатов наблюдений группы не соответствует нормальному.

Характеристики

Тип файла
Документ
Размер
1,81 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6487
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее