150744 (621381), страница 2

Файл №621381 150744 (Расчет линейных электрических цепей переменного тока) 2 страница150744 (621381) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

S = U * I = 300*6.02 = 1806 В*А.

P = S * Cosφ = 1806 * 0,9706 = 1753 Вт.

Q = S * Sinφ = 1806*(- 0.2404) = - 434 вар.

Для построения векторной диаграммы задаёмся масштабами напряжений MU = 25 В/см и токов MI = 0.5 А/см. Векторную диаграмму начинаем строить с вектора напряжения, который откладываем вдоль горизонтальной положительной оси. Векторная диаграмма токов строится с учётом того, что активные токи Ia2 и Ia3 совпадают по фазе с напряжением, поэтому их векторы параллельны вектору напряжения; реактивный индуктивный ток Ip2 отстает по фазе от напряжения, и его вектор строим под углом 900 к вектору напряжения в сторону отставания; реактивные емкостные токи Ip1 и Ip3 опережают по фазе напряжение, и их векторы строим под углом 90 к вектору напряжения в сторону опережения. Вектор тока в неразветвлённой части цепи строим с начала построения в конец вектора емкостного тока Ip3. Векторная диаграмма построена на рисунке 4.

Ia2

φ2

MI = 0,5 А/см

МU = 25 В/см

I2

I1=Ip1 Ip2

OIa U

I

φ

a3

φ3

I3 Ip3 Ip

I

Рисунок 4

3 Расчёт сложных цепей переменного тока символическим методом

Электрическая схема цепи и комплексная схема замещения представлены на рисунке 5а и б соответственно.

Рисунок 5

Намечаем в независимых контурах заданной цепи, как показано на рисунке 5б, контурные токи IK1 и IK2 – некоторые расчётные комплексные величины, которые одинаковы для всех ветвей выбранных контуров. Направления контурных токов принимаются произвольно. Для определения контурных токов составляем два уравнения по второму закону Кирхгофа:

I K1*(Z1 + Z2) – IK2*Z2 = E2

- IK1*Z2+IK2*(Z2+Z3)= E3 - E2

Подставляем данные в систему:

IK1*(- j65+14+j56) – IK2*(14+j56) = 230

-IK1*(14+j56) +IK2 *(14+j56+56 – j23) = j240-230

IK1*(14-j9) – IK2*(14+j56) = 230

-IK1*(14+j56) + IK2*(70+j33) = -230+ j240

Решаем систему с помощью определителей. Определитель системы:

=1277-j168+2940– j1568=4217-j1736

Частные определители :

= = 16100+j7590–16660-j9520= -560–j1930.

=-1060+j5430+3220+j12880 = 2160+j18310

Определяем контурные токи:

IK1 = = = 0.0476-j0.438 A.

IK2 = = = - 1.09+ j3.89 A.

Действительные токи в ветвях цепи определяем как результат наложения контурных токов:

I1 = IK1 = 0.0476 – j0.438 = 0.441 A

I2 = IK1-IK2 = 0.0476.- j0.438+1.09- j3.89 = 1.14 – j4.33 = 4.48 A

I3 = IK2 = -1.09 + j3.89 = 4.04 A.

Составляем уравнение баланса мощностей в заданной электрической цепи. Определяем комплексные мощности источников:

SE2 = E2* =230(1.14+j4.33) = 262+j996=1030 B*A

SE23= E3* = j240*(-1.09 – j3.89) = 912 – j262 = 949 B*A

Определяем комплексные мощности приёмников электрической энергии:

S1 = I12*Z1 =0.4412*( – j65) = – j12.6 =12.6 B*A

S2 = I22*Z2 = 4.482*(14+j56) = 281+j1124=1159 B*A

S3 = I32*Z3 = 4.042*(56 – j23) = 914– j375 =988 B*A.

Уравнение баланса комплексных мощностей!

SЕ1 + SE2 = S1 + S2 + S3;

262+j996+912-j262 = – j12.6+281+j1124+914– j375

1174+ j734 1182+ j749; 1385 1400

Относительная и угловая погрешности незначительны.

Для построения векторной диаграммы задаёмся масштабами токов MI = 0.25 А/см и ЭДС ME = 50 В/см. Векторная диаграмма в комплексной плоскости построена на рисунке 6.

4 Расчёт трёхфазной цепи при соединении приемника в звезду

Схема заданной цепи изображена на рисунке 7.

Определяем систе­му фазных напряжений генератора. Фазное напряжение:

UФ = Uл/ = 380/1,73=220 В.

Комплексные фазные напряжения генератора:

UA = UФ = 220 B

UB = UAe-j120 = 220e-j120 = –110 – j191 B

UC = UAej120 = 220ej120 = –110 + j191 B

Определяем полные проводимости фаз приёмника:

YA = = j0,01538 См.

YB = = 0.0042-j0.0168 См.

YC = = 0.0153+j0.00628Cм.

YN= = = j0.03125 См.

Рисунок 7

Узловым напряжением является в данном случае напряжение смещения нейтрали, которое определяется по формуле:

UN=

= (j3.38-3.67+j1.05-2.88+j2.23)/(0.05075+j0.00486) = (-6.55+j6.66)/(0.0195+j0.03611)= 67+j218 = 228 B.

Определяем фазные напряжения на нагрузке:

UA/ = UAUN = 220- (67+j218) = 153-j218 = 266 B.

UB/ = UBUN = (–110-j191) - (67+j218) = -177-j409 =446 B.

UC/ = UCUN=(–110+j191) - (67+j218) = -177 – j27 = 179 B.

Определяем токи в фазах нагрузки:

IA = UA/*YA = (153-j218)*(j0.01538) = 3.35+j2.35 = 4.1 A.

IB = UB/*YB = (-177-j409)*(0.0042-j0.0168) = -7.61+j1.26 =7.72 A.

IC=UC/*YC= (-177 – j27)*(0.0153+j0.00628)=- 2,53–j1,52= 2,96 A.

IN = UN*YN = (67+j218)*j0.03125 = - 6,8 + j2,09 = 7,12*

Проверяем правильность определения токов по первому закону Кирхгофа для точки N’:

IA + IB + IC =IN

3.35+j2.35 -7.61+j1.26 - 2,53 – j1,52 - 6,8 + j2,09;

- 6,79+j2.09 - 6,8 + j2,09.

Определяем комплексные мощности фаз и всей цепи:

SA = IA2 * Z1 = 4,12*(-j65) = -j1092=1092 B*A.

SB = IB2 * Z2 = 7,722*(14+j56) = 834+j3338 =3440 B*A

SC = IC2 * Z3 = 2,962*(56-j23) = 491 – j 202 = 530 B*A.

S= SA + SB + SC = -j1092+ 834+j3338+ 491 – j 202 = 1325+j2044 =

= 2436 B*A.

Для построения векторной диаграммы задаёмся масштабами токов MI = 1 А/см и напряжений MU = 40 B/см. Векторная диаграмма на комплексной плоскости построена на рисунке 8.


5 Расчёт трёхфазной цепи при соединении приёмника в треугольник

Схема заданной цепи изображена на рисунке 9

Рисунок 9.

В данном случае линейные напряжения генератора являются фазными

напряжениями нагрузки:

UAB = UЛ = 380 В.

UBC = 380 = -190-j329 B.

UCA = 380 = -190+j329 B.

Определяем систему фазных токов нагрузки:

IAB = = = j5,85 = 5,85 A

IBC = = = -6,32+j1,81 = 6,58 A

ICA = = = -4,96+j3,83 = 6,27 A

Систему линейных токов определяем из соотношений:

IA = IABICA = j5,85+4,96-j3,83 = 4,96+j2,02 = 5,36 A

IB = IBCIAB = -6,32+j1,81-j5,85 = -6,32-j4,04 = 7,5 A

IC = ICAIBC = -4,96+j3,83+6,32-j1,81 = 1,36+j1,92 =2,35 A

Определяем мощности фаз приемника:

SAB =IAB2*Z1 = 5,852*(-j65) = -j2224 = 2224 B*A.

SBC = IBC2*Z2 = 6,582*(14+j56) = 606+j2425 = 2499 B*A.

SCA = ICA2*Z3 = 6,272*(56 – j23) =2201– j904 = 2380* B*A.

Определяем мощность трехфазной нагрузки:

SAB +SBC +SCA = -j2224+606+j2425+2201– j904 =2807 – j703 =

= 2894 B*A.

Для построения векторной диаграммы задаёмся масштабами токов MI =1 A/см и напряжений MU = 50A/см. Векторная диаграмма построена на рисунке 10.


6 Расчёт неразветвлённой цепи с несинусоидальными напряжениями и токами

Составляем схему заданной цепи, подключая последовательно соединённые приёмники к источнику несинусоидального напряжения, под действием которого в цепи возникает ток с мгновенным значением

i=7Sin(t+130)+1,2Sin(2t-860)+0,4Sin3t A, который на схеме замещения представляем как последовательно соединённые три источника переменного напряжения u1, u2 и u3 c разными частотами (рисунок 11)

Величины сопротивлений заданы для частоты первой гармоники:

XC11 = 18 Ом, R2 = 23 Ом, XL21 = 14 Ом, R3 = 12 Ом, XC31 = 62 Ом. Поскольку напряжения источников имеют разные частоты, то и реактивные сопротивления для них будут иметь разные величины. Активные сопротивления считаем от частоты не зависящими. Поэтому расчёт ведём методом наложения, то есть отдельно для каждой гармоники.

.

Рисунок 11.

Первая гармоника

Определяем активное и реактивное сопротивления всей цепи:

R = R2 + R3 = 14+56 = 70 Ом. X1 = -XC11+ XL21- XC31 = - 65+56–23 =

= -32 Ом.

Полное сопротивление цепи:

Z1 = = = 76,7 Ом.

Амплитудные значения напряжения и тока:

Im1 = 7 A, Um1 = Im1*Z1= 7*76.7 =537 B.

Действующие значения напряжения и тока:

U1 = Um1 / = 537 / 1,41 = 381 B.

I1 = Im1 / = 7 / 1,41 = 4.96 A.

Угол сдвига фаз между напряжением и током определяем по синусу:

Sinφ1 = X1/Z1 = -32/76.7 = - 0.4172. 1= - 24.66, Cosφ1=0.9088.

Активная и реактивная мощности первой гармоники:

P1 = I12 * R = 4.962 * 70 =1722 Вт.

Начальная фаза тока определяется из соотношения:

φ1 = U1I1, отсюда U1 =I1 + 1 = 13- 24.66= - 11.66

Мгновенное значение напряжения первой гармоники

u1= Um1 * Sin (ωt + U1) = 537 * Sin (ωt – 11.66) B.

Вторая гармоника.

Для остальных гармоник напряжения расчёты приводим без дополнительных разъяснений.

X2= XC11/ 2 + XL21* 2 - XC31 / 2 = -65/ 2 + 56* 2 - 23 / 2 = 68 Ом.

Z2= = =97.6 Ом,

Im2=1.2 A, Um2= Im2 *Z2=1.2*97.6 =117 B.

U2= Um2/ =117 / 1,41 = 83 B.I2= Im2/ = 1.2 / 1,41 = 0.85 A.

Sin φ2= X2/ Z2= 68/97.6= 0,6967.2 = 44.16, Cos φ2 = 0,7173.

P2 = I22 * R2 = 0.852 *70 = 51 Вт.

U2 =I2 + 2 = -86+ 44.16= - 41.9

u2= Um2 * Sin (2ωt + U2) = 117 * Sin (2ωt – 41.9) B.

Третья гармоника

X3= XC11 /3 + XL11* 3 – XC31 / 3 = - 65 / 3 + 56* 3 - 23 / 3 =139 Ом.

Z3 = = 156 Ом. Im3 =0.4 A, Um3 = Im3 *Z3 =0.4 *156 =

= 62.4 B.

U3= Um3/ =62.4/ = 44.3 B. I3 = Im3/ = 0.4 / 1,41 = 0.28 A.

Sin φ3 = X3 / Z3 =139 /156 = 0,891. 3 = 63. Cos φ3 = 0,454.

P3 = I32 * R = 0.282 *70 = 0.5 Вт.

U3 =I3 + 3 = 63.

Характеристики

Тип файла
Документ
Размер
1,75 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее