150744 (621381), страница 2
Текст из файла (страница 2)
S = U * I = 300*6.02 = 1806 В*А.
P = S * Cosφ = 1806 * 0,9706 = 1753 Вт.
Q = S * Sinφ = 1806*(- 0.2404) = - 434 вар.
Для построения векторной диаграммы задаёмся масштабами напряжений MU = 25 В/см и токов MI = 0.5 А/см. Векторную диаграмму начинаем строить с вектора напряжения, который откладываем вдоль горизонтальной положительной оси. Векторная диаграмма токов строится с учётом того, что активные токи Ia2 и Ia3 совпадают по фазе с напряжением, поэтому их векторы параллельны вектору напряжения; реактивный индуктивный ток Ip2 отстает по фазе от напряжения, и его вектор строим под углом 900 к вектору напряжения в сторону отставания; реактивные емкостные токи Ip1 и Ip3 опережают по фазе напряжение, и их векторы строим под углом 90 к вектору напряжения в сторону опережения. Вектор тока в неразветвлённой части цепи строим с начала построения в конец вектора емкостного тока Ip3. Векторная диаграмма построена на рисунке 4.
Ia2
φ2

МU = 25 В/см
I2
I1=Ip1 Ip2
OIa U
I
φ
a3
φ3
I3 Ip3 IpI
Рисунок 4
3 Расчёт сложных цепей переменного тока символическим методом
Электрическая схема цепи и комплексная схема замещения представлены на рисунке 5а и б соответственно.
Рисунок 5
Намечаем в независимых контурах заданной цепи, как показано на рисунке 5б, контурные токи IK1 и IK2 – некоторые расчётные комплексные величины, которые одинаковы для всех ветвей выбранных контуров. Направления контурных токов принимаются произвольно. Для определения контурных токов составляем два уравнения по второму закону Кирхгофа:
I K1*(Z1 + Z2) – IK2*Z2 = E2
- IK1*Z2+IK2*(Z2+Z3)= E3 - E2
Подставляем данные в систему:
IK1*(- j65+14+j56) – IK2*(14+j56) = 230
-IK1*(14+j56) +IK2 *(14+j56+56 – j23) = j240-230
IK1*(14-j9) – IK2*(14+j56) = 230
-IK1*(14+j56) + IK2*(70+j33) = -230+ j240
Решаем систему с помощью определителей. Определитель системы:
=1277-j168+2940– j1568=4217-j1736
Частные определители :
=
= 16100+j7590–16660-j9520= -560–j1930.
=-1060+j5430+3220+j12880 = 2160+j18310
Определяем контурные токи:
IK1 = =
= 0.0476-j0.438 A.
IK2 = =
= - 1.09+ j3.89 A.
Действительные токи в ветвях цепи определяем как результат наложения контурных токов:
I1 = IK1 = 0.0476 – j0.438 = 0.441 A
I2 = IK1-IK2 = 0.0476.- j0.438+1.09- j3.89 = 1.14 – j4.33 = 4.48 A
I3 = IK2 = -1.09 + j3.89 = 4.04 A.
Составляем уравнение баланса мощностей в заданной электрической цепи. Определяем комплексные мощности источников:
SE2 = E2* =230(1.14+j4.33) = 262+j996=1030
B*A
SE23= E3* = j240*(-1.09 – j3.89) = 912 – j262 = 949
B*A
Определяем комплексные мощности приёмников электрической энергии:
S1 = I12*Z1 =0.4412*( – j65) = – j12.6 =12.6 B*A
S2 = I22*Z2 = 4.482*(14+j56) = 281+j1124=1159 B*A
S3 = I32*Z3 = 4.042*(56 – j23) = 914– j375 =988 B*A.
Уравнение баланса комплексных мощностей!
SЕ1 + SE2 = S1 + S2 + S3;
262+j996+912-j262 = – j12.6+281+j1124+914– j375
1174+ j734 1182+ j749; 1385 1400
Относительная и угловая погрешности незначительны.
Для построения векторной диаграммы задаёмся масштабами токов MI = 0.25 А/см и ЭДС ME = 50 В/см. Векторная диаграмма в комплексной плоскости построена на рисунке 6.
4 Расчёт трёхфазной цепи при соединении приемника в звезду
Схема заданной цепи изображена на рисунке 7.
Определяем систему фазных напряжений генератора. Фазное напряжение:
UФ = Uл/ = 380/1,73=220 В.
Комплексные фазные напряжения генератора:
UA = UФ = 220 B
UB = UAe-j120 = 220e-j120 = –110 – j191 B
UC = UAej120 = 220ej120 = –110 + j191 B
Определяем полные проводимости фаз приёмника:
YA = = j0,01538 См.
YB = = 0.0042-j0.0168 См.
YC = = 0.0153+j0.00628Cм.
YN= =
= j0.03125 См.
Рисунок 7
Узловым напряжением является в данном случае напряжение смещения нейтрали, которое определяется по формуле:
UN=
= (j3.38-3.67+j1.05-2.88+j2.23)/(0.05075+j0.00486) = (-6.55+j6.66)/(0.0195+j0.03611)= 67+j218 = 228 B.
Определяем фазные напряжения на нагрузке:
UA/ = UA – UN = 220- (67+j218) = 153-j218 = 266 B.
UB/ = UB – UN = (–110-j191) - (67+j218) = -177-j409 =446 B.
UC/ = UC–UN=(–110+j191) - (67+j218) = -177 – j27 = 179 B.
Определяем токи в фазах нагрузки:
IA = UA/*YA = (153-j218)*(j0.01538) = 3.35+j2.35 = 4.1 A.
IB = UB/*YB = (-177-j409)*(0.0042-j0.0168) = -7.61+j1.26 =7.72 A.
IC=UC/*YC= (-177 – j27)*(0.0153+j0.00628)=- 2,53–j1,52= 2,96 A.
IN = UN*YN = (67+j218)*j0.03125 = - 6,8 + j2,09 = 7,12*
Проверяем правильность определения токов по первому закону Кирхгофа для точки N’:
IA + IB + IC =IN
3.35+j2.35 -7.61+j1.26 - 2,53 – j1,52 - 6,8 + j2,09;
- 6,79+j2.09 - 6,8 + j2,09.
Определяем комплексные мощности фаз и всей цепи:
SA = IA2 * Z1 = 4,12*(-j65) = -j1092=1092 B*A.
SB = IB2 * Z2 = 7,722*(14+j56) = 834+j3338 =3440 B*A
SC = IC2 * Z3 = 2,962*(56-j23) = 491 – j 202 = 530 B*A.
S= SA + SB + SC = -j1092+ 834+j3338+ 491 – j 202 = 1325+j2044 =
= 2436 B*A.
Для построения векторной диаграммы задаёмся масштабами токов MI = 1 А/см и напряжений MU = 40 B/см. Векторная диаграмма на комплексной плоскости построена на рисунке 8.
5 Расчёт трёхфазной цепи при соединении приёмника в треугольник
Схема заданной цепи изображена на рисунке 9
Рисунок 9.
В данном случае линейные напряжения генератора являются фазными
напряжениями нагрузки:
UAB = UЛ = 380 В.
UBC = 380 = -190-j329 B.
UCA = 380 = -190+j329 B.
Определяем систему фазных токов нагрузки:
IAB = =
= j5,85 = 5,85
A
IBC = =
= -6,32+j1,81 = 6,58
A
ICA = =
= -4,96+j3,83 = 6,27
A
Систему линейных токов определяем из соотношений:
IA = IAB – ICA = j5,85+4,96-j3,83 = 4,96+j2,02 = 5,36 A
IB = IBC – IAB = -6,32+j1,81-j5,85 = -6,32-j4,04 = 7,5 A
IC = ICA – IBC = -4,96+j3,83+6,32-j1,81 = 1,36+j1,92 =2,35 A
Определяем мощности фаз приемника:
SAB =IAB2*Z1 = 5,852*(-j65) = -j2224 = 2224 B*A.
SBC = IBC2*Z2 = 6,582*(14+j56) = 606+j2425 = 2499 B*A.
SCA = ICA2*Z3 = 6,272*(56 – j23) =2201– j904 = 2380* B*A.
Определяем мощность трехфазной нагрузки:
SAB +SBC +SCA = -j2224+606+j2425+2201– j904 =2807 – j703 =
= 2894 B*A.
Для построения векторной диаграммы задаёмся масштабами токов MI =1 A/см и напряжений MU = 50A/см. Векторная диаграмма построена на рисунке 10.
6 Расчёт неразветвлённой цепи с несинусоидальными напряжениями и токами
Составляем схему заданной цепи, подключая последовательно соединённые приёмники к источнику несинусоидального напряжения, под действием которого в цепи возникает ток с мгновенным значением
i=7Sin(t+130)+1,2Sin(2t-860)+0,4Sin3t A, который на схеме замещения представляем как последовательно соединённые три источника переменного напряжения u1, u2 и u3 c разными частотами (рисунок 11)
Величины сопротивлений заданы для частоты первой гармоники:
XC11 = 18 Ом, R2 = 23 Ом, XL21 = 14 Ом, R3 = 12 Ом, XC31 = 62 Ом. Поскольку напряжения источников имеют разные частоты, то и реактивные сопротивления для них будут иметь разные величины. Активные сопротивления считаем от частоты не зависящими. Поэтому расчёт ведём методом наложения, то есть отдельно для каждой гармоники.
Рисунок 11.
Первая гармоника
Определяем активное и реактивное сопротивления всей цепи:
R = R2 + R3 = 14+56 = 70 Ом. X1 = -XC11+ XL21- XC31 = - 65+56–23 =
= -32 Ом.
Полное сопротивление цепи:
Z1 = =
= 76,7 Ом.
Амплитудные значения напряжения и тока:
Im1 = 7 A, Um1 = Im1*Z1= 7*76.7 =537 B.
Действующие значения напряжения и тока:
U1 = Um1 / = 537 / 1,41 = 381 B.
I1 = Im1 / = 7 / 1,41 = 4.96 A.
Угол сдвига фаз между напряжением и током определяем по синусу:
Sinφ1 = X1/Z1 = -32/76.7 = - 0.4172. 1= - 24.66, Cosφ1=0.9088.
Активная и реактивная мощности первой гармоники:
P1 = I12 * R = 4.962 * 70 =1722 Вт.
Начальная фаза тока определяется из соотношения:
φ1 = U1 – I1, отсюда U1 =I1 + 1 = 13- 24.66= - 11.66
Мгновенное значение напряжения первой гармоники
u1= Um1 * Sin (ωt + U1) = 537 * Sin (ωt – 11.66) B.
Вторая гармоника.
Для остальных гармоник напряжения расчёты приводим без дополнительных разъяснений.
X2= XC11/ 2 + XL21* 2 - XC31 / 2 = -65/ 2 + 56* 2 - 23 / 2 = 68 Ом.
Z2= =
=97.6 Ом,
Im2=1.2 A, Um2= Im2 *Z2=1.2*97.6 =117 B.
U2= Um2/ =117 / 1,41 = 83 B.I2= Im2/
= 1.2 / 1,41 = 0.85 A.
Sin φ2= X2/ Z2= 68/97.6= 0,6967.2 = 44.16, Cos φ2 = 0,7173.
P2 = I22 * R2 = 0.852 *70 = 51 Вт.
U2 =I2 + 2 = -86+ 44.16= - 41.9
u2= Um2 * Sin (2ωt + U2) = 117 * Sin (2ωt – 41.9) B.
Третья гармоника
X3= XC11 /3 + XL11* 3 – XC31 / 3 = - 65 / 3 + 56* 3 - 23 / 3 =139 Ом.
Z3 = = 156 Ом. Im3 =0.4 A, Um3 = Im3 *Z3 =0.4 *156 =
= 62.4 B.
U3= Um3/ =62.4/
= 44.3 B. I3 = Im3/
= 0.4 / 1,41 = 0.28 A.
Sin φ3 = X3 / Z3 =139 /156 = 0,891. 3 = 63. Cos φ3 = 0,454.
P3 = I32 * R = 0.282 *70 = 0.5 Вт.
U3 =I3 + 3 = 63.