144650 (620673), страница 2
Текст из файла (страница 2)
Sw1 = 150 мм (S1 ≤ 0,5h0 = 0,5 ∙450 = 225 мм; S1≤300мм)
Sw2=300мм (S2 ≤ 0,75 h0 = 0,75 ∙ 450 = 337мм; S2 ≤500мм).
Прочность бетонной полосы проверим из условия (7):
>Qмах = 58700 Н
т.е. прочность полосы обеспечена
Интенсивность хомутов определим по формуле:
, Н/мм (4.8.)
Н/мм
Поскольку qsw=50.4 Н/мм > 0,25Rвtb = 0,251.05170 =44.6 Н/мм – хомуты полностью учитываются в расчете и значение Мb определяется по формуле:
, Н∙мм (4.9.)
Н∙мм
Определим длину проекции самого невыгодного наклонного сечения с:
кН/м.
Поскольку
значение с определяем по формуле:
, но не более 3h0 (4.10.)
мм > 3h0=3450=1350 мм,
следовательно, принимаем с=1350 мм.
Длина проекции наклонной трещины с0 – принимается равной с, но не более 2h0. Принимаем
с0 = 2h0 = 2 450 =900 мм. Тогда
QSW = 0,75qSW c0 = 0,75 50.4 900 = 34020 Н = 34.02 кН
кН,
кН.
Проверяем условие
кН >
кН.
т.е. прочность наклонных сечений обеспечена.
Проверим требование:
> Sw1. (4.11.)
мм > Sw1=150 мм.
т.е. требование выполнено.
4.4 Определение приопорного участка
При равномерно распределённой нагрузке длина приопорного участка определяется в зависимости от:
Н/мм,
где
.
Поскольку
, тогда:
, Н/мм
Н/мм
Так как
, то длина приопорного участка:
, (4.12.)
где
(4.13.)
Н
мм
-
4.5 Расчет плиты по деформациям и по раскрытию трещин (вторая группа предельных состояний)
1. Расчет прогиба плиты
Исходные данные для расчета:
Изгибающий момент в середине пролета МII=84.95 кНм.
Модуль упругости: бетона Eb=30000 МПа, арматуры Es=200000 МПа.
Сечение тавровое. С учетом замоноличивания бетоном продольного шва между ребрами расчетная ширина полки будет bf=1140 мм и средняя ширина ребра
b=(255+185)/2=220 мм
Проверяем наличие нормальных к продольной оси трещин в растянутой зоне ребер. Трещины образуются при условии
MII > Rbt,serWpl. ( 4.14.)
Упругопластический момент сопротивления Wpl по растянутой зоне находим по формуле при Аs=0 и 1=0:
Wpl=(0,292+0,7521+0,151)bh2, (4.15.)
где 1=
1=
=
Wpl=(0,292+1,50,00566,67+0,150,42)·2205002 = 22,605106 мм3.
Rbt,serWpl.=1,5522,605106=35,04106 Нмм=35,0 4 кНм < MII=84,95 кНм,
т.е. растянутой зоне образуются трещины.
Кривизну 1/r определяем для элемента с трещинами в растянутой зоне, согласно пп. 4.27-4.29 СНиП 2.03.01-84* [2]. Для железобетонного изгибаемого элемента с ненапрягаемой арматурой формула (160) указанного СНиПа примет вид:
, (4.16.)
Где b = 0,9 – для тяжелого бетона (п. 4.27);
v = 0,15 – для тяжелого бетона при продолжительном действии нагрузки (п. 4.27, табл. 35).
Коэффициент s вычисляется по формуле (167) СНиП 2 при исключении третьего члена:
s=1,25 - lsm, (4.17.)
где ls=0,8 (п. 4.29, табл. 36, продолжительное действие нагрузки);
m=
< 1
(формула (168) для изгибаемого элемента при отсутствии предварительного напряжения).
s=1,25 – 0,80,41 =0.922 < 1. Согласно п. 4.29 СНиПа 2, принимаем s=1,0.
Плечо внутренней пары сил и площадь сжатой зоны бетона определяется по приближенным формулам, полагая:
x=
мм,
мм,
мм2.
Кривизна составит:
мм
Прогиб плиты в середине пролета будет
f=
мм < fult=
мм,
т. е. прогиб плиты лежит в допустимых пределах (см. 1, табл. 19).
2. Проверка ширины раскрытия трещин, нормальных к оси продольных ребер, производится согласно пп. 4.14 и 4.15 СНиП 2.03.01 – 84* [2]. Ширина раскрытия трещин определяется по формуле (144) СНиПа:
Для рассчитываемой плиты, загруженной только длительной нагрузкой, входящие в расчетную формулу для аcrc величины согласно п. 4.14 СНиПа равны:
< 0,02;
φl=1,6-15μ=1,6-15•0,0062=1,507 (тяжелый бетон естественной влажности); δ=1,0; η=1,0; d- диаметр принятой арматуры.
Напряжение в арматуре σs в сечении с трещиной при расположении арматуры в два ряда по высоте находится на основании формул (147) и (149) СНиПа [2] при значении Р=0 (предварительное напряжение отсутствует):
,
Где
Значения z и x принимаются такой же величины, как при расчете прогиба:
а1=50 мм;
мм;
;
Н/мм2=340.7 МПа < Rs,ser=500 МПа
(требование п. 4.15 СНиПа [2]).
Ширина раскрытия трещин составит:
0,36 мм = acrc2 = 0,36 мм,
т.е. ширина раскрытия трещин лежит в допустимых пределах.
-
-
5. Расчет сборного ригеля поперечной рамы
Для сборного железобетонного перекрытия, план и разрез которого представлены на рис. 1, требуется рассчитать сборный ригель. Сетка колонн l lк = 6.75.7 м. Для ригеля крайнего пролета построить эпюры моментов и арматуры.
-
Дополнительные данные
Бетон тяжелый, класс бетона B20, коэффициент работы бетона γb1 = 1,0. Расчетные сопротивления бетона с учетом γb1 = 1,0 равны:
Rb = 1,0∙11,5 = 11,5 МПа;
Rbt = 1,0∙0,9 = 0,9 МПа.
Продольная и поперечная арматура – класса A500. Коэффициент снижения временной нагрузки к1=0,75.
-
Расчетные пролеты ригеля
Предварительно назначаем сечение колонн 400400 мм (hc = 400 мм), вылет консолей lc = 300 мм. Расчетные пролеты ригеля равны:
-
крайний пролет l1 = l-1,5hc-2lc = 5,7 – 1,5 ∙ 0,4 – 2 ∙ 0,3 = 4,5 м;
-
средний пролет l2 = l - hc - 2lc = 6,7 – 0,4 – 2 ∙ 0,3 = 4,7 м.
-
Расчетные нагрузки
Нагрузка на ригель собирается с грузовой полосы шириной lк = 6,7 м, равной расстоянию между осями ригелей (по lк/2 с каждой стороны от оси ригеля).
а) постоянная нагрузка (с γn = 0,95 и γƒ = 1,1):
вес железобетонных плит с заливкой швов:
0,95∙1,1∙3∙6,7 = 21 кН/м;
вес пола и перегородок:
0,95∙1,1∙2,5∙6,7 = 17.5 кН/м;
собственный вес ригеля сечением bh 0,30,6 м (размеры задаются ориентировочно)
0,95∙1,1∙0,3∙0,6∙25 = 4,7 кН/м;
итого: постоянная нагрузка g = 43.2 кН/м.
б) Временная нагрузка с коэффициентом снижения к1 = 0,75 (с γn = 0,95 и γƒ = 1,2):
ρ = 0,95∙0,75∙1,2∙8.5∙6,0 = 41.42 кН/м.
Полная расчетная нагрузка: q = g + ρ = 43.2 + 41.42 = 84.62 кН/м.
-
Расчетные изгибающие моменты.
В крайнем пролете:
кНм
На крайней опоре:
кНм
В средних пролетах и на средних опорах:
кНм
Отрицательные моменты в пролетах при p/ ρ = 41.42 / 43.2 = 0,96 1,0:
в крайнем пролете для точки «4» при β = - 0,010
M4=β (g+ρ) l12 = -0,010 ∙84.62∙4,5 2 = -17 кН∙м;
в среднем пролете для точки «6» при β= -0,013
M6=β (g+ρ) l22 = -0,013∙84.62∙4.7 2 = - 24.3 кН∙м.
-
Расчетные поперечные силы
На крайней опоре:
QA = 0,45ql1 = 0,45∙84.62∙4,5 = 171.4 кН.
На опоре B слева:
0,55 84.62 4, 5 = 209.4 кН.
На опоре B справа и на средних опорах:
0,5 84.62 4.7 = 198.9 кН.
-
Расчет ригеля на прочность по нормальным сечениям
Для арматуры класса A500 ξR = 0,49 (см. расчет продольного ребра плиты). Принимаем ширину сечения b=300мм. Высоту ригеля определяем по опорному моменту MB = 117 кН∙м, задаваясь значением ξ = 0,35 < ξR = 0,49. Находим αm = ξ (1 – 0,5ξ) = 0,35(1 – 0,5∙0,35) = 0,289. Сечение рассчитывается как прямоугольное по формуле (1):
мм;
h = h0+a = 343+65 = 408 мм;
принимаем h = 450 мм (h/b = 450/300 = 1,5).
Расчет арматуры
Расчетное сопротивление арматуры класса A500 будет Rs = 435 МПа. Расчет производится по формулам:
Аs =
а) Крайний пролет. M1 = 142.7 кН∙м; b = 300 мм; h = 450 мм; h0 = h - a = 450 – 65 = 385 мм (арматура расположена в два ряда по высоте)
Аs =
1023 мм2.
Принимаем арматуру 2Ø16 A500 + 2Ø20 A500 с АS = 402 + 628 = 1030 мм2.
Проверяем условие αm < αR:
αR = ξR(1-0,5 ξR) = 0,49(1-0,5∙0,49) = 0,37
Таким образом, условие αm = 0,279 < αR = 0,37 выполняется, т.е. для сечения ригеля с наибольшим моментом M1 условие выполняется.
б) Средний пролет. M2 = 117 кН∙м; b = 300 мм; h = 450 мм; h0 = h-a = 450-60=390 мм (арматура расположена в два ряда по высоте)
Аs =
791мм2
принято 214 A500 и 218 A500 с As = 308 + 509 = 817 мм2.
в) Средняя опора. MB = MC = M = 117 кН∙м; b = 300 мм; h = 450 мм; h0 = h - a = 450-65 = 385 мм (арматура расположена в один ряд с защитным слоем 50 мм)
Аs =
805мм2
принято 225 A500 с As = 982 мм2.
г) Крайняя опора. MA = 85.7 кН∙м; h0 = h - a = 450 – 65 = 385 мм (арматура расположена в один ряд с защитным слоем 50 мм);
Аs =
565 мм2
принято 220 A500 с As = 628 мм2.
д) Верхняя пролетная арматура среднего пролета по моменту в сечении «6»
M6 = 24.3 кН∙м; b = 300 мм; h = 450 мм; h0 =
=h - a = 450-35=415мм (однорядная арматура);
Аs =
138 мм2
принято 210 A500 с As= 157 мм2.
е) Верхняя пролетная арматура крайнего пролета по моменту в сечении «4»
M4 = 17 кН∙м; h0 = h - a = 415 мм (однорядная арматура);
Аs =
96.9 мм2
принято 28 А500 с As = 101 мм2.
-
Расчет ригеля на прочность по наклонным сечениям на действие поперечных сил
В крайнем и средних пролетах ригеля устанавливаем по два плоских сварных каркаса с односторонним расположением рабочих продольных стержней. Наибольший диаметр продольных стержней в каждом каркасе d = 25 мм.
Qmax = 209.4 кН. Бетон В20 (Rb = 11,5МПа; Rbt = 0,9МПа γb1 = 1,0
Так как нагрузка на ригель включает ее временную составляющую).
Принимаем во всех пролетах поперечные стержни из стали класса А-II (А300) диаметром dsw = 6 мм (Asw = 28.3 мм2). Принятый диаметр поперечных стержней удовлетворяет требованиям обеспечения качественной сварки, расчетное сопротивление поперечных стержней принимаем, согласно Приложения, равным Rsw = 300 МПа. Количество поперечных стержней в нормальном сечении равно числу плоских сварных каркасов в элементе, т.е. n=2.














