22276-1 (618577), страница 4

Файл №618577 22276-1 (Метафоры памяти) 4 страница22276-1 (618577) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Однако в конце 80-х годов интерес к этой области опять пробудился в связи с появлением совершенно новых возможностей. Компьютеры первых поколений были, по существу, последовательными процессорами, т. е. в каждый данный момент осуществляли только одну операцию; переработка информации носила линейный характер, хотя и шла с невероятно большой скоростью. Однако сам принцип линейных операций накладывал ограничение на скорость работы машины, так как сигналы из одной части компьютера в другую не могут передаваться быстрее, чем со скоростью света. Этот предел получил название ограничения фон Неймана. Когда новые поколения супермашин приблизились вплотную к этому пределу, разработчики компьютерных моделей обратили, наконец, внимание на то, что настоящий мозг работает совсем иначе. Он производит множество операций одновременно, причем в осуществлении какой-то одной функции участвуют разные части нейронной сети, а каждая отдельная клетка может выполнять разные функции. Ограничение, накладываемое скоростью передачи сигналов, можно бьию бы преодолеть, если бы удалось создать компьютеры, более сходные с мозгом, т. е. способные осуществлять различные операции не только последовательно, но и параллельно.

Результатом был взрыв интереса к новым конструктивным решениям, основанным на принципе параллельной и распределенной обработки информации (ПРО). Появилось новое перспективное поколение машин, заинтересовавшее и военных, и промышленность, и разработчиков искусственного интеллекта, хотя, разумеется, только два первых члена этой триады несли расходы по их созданию. Вот один из показателей масштабов этого интереса: в конце 80-х годов Директорат Европейского сообщества по научным исследованиям посчитал, что Европа отстает от США и Японии в эксплуатации этих новых систем, и выделил 50 млн. экю (около 50 млн. долларов США) на работы по моделированию нервной функции на основе ПРО. Когда в 1986 году Дэвид Румелхарт и Джеймс Клелланд с их коллегами из Массачусетского технологического института выпустили большой двухтомник статей по перспективам применения ПРО для моделирования мозга, в день поступления его в продажу, говорят, было продано 6000 экземпляров.

Новый подход к моделированию известен под названием "коннекционизма". Подобно прежнему подходу, он основан на предположении, что мозг состоит из ансамблей нейронов с многочисленными связями между ними. Надлежащим образом' соединенные группы нейронов могут обучаться таким образом, что они будут сортировать и классифицировать входные сигналы и постепенно изменять свои свойства по мере поступления новой информации. Однако в отличие от моделей прежнего, персептронного типа каждый элемент "памяти" не заключен здесь в одной-единственной клетке или паре связанных клеток: вместо этого функция памяти является свойством нейронной сети как целого. Кроме того, если в персептронных моделях отдельные функциональные единицы сети должны были получать сигналы прямо из внешнего мира и соответственно изменять свои свойства, то в новых коннекционистских моделях нейронные сети более сложны - они включают слои "клеток", расположенных между входными и выходными элементами (разработчики называют их "скрытыми слоями"). Это резко повышает эффективность системы. Первые поколения моделей искусственного интеллекта были организованы таким образом, будто мозг - это простой телефонный коммутатор с прямыми связями между органами чувств, например глазами и ушами, и исполнительными органами, такими как мышцы. Эти модели фактически игнорировали тот факт, что большинство нейронов в достаточно сложном мозгу не связано непосредственно с внешним миром через сенсорные входы и двигательные выходы; такие нейроны соединены лишь между собой: они получают сигналы от других нейронов и отвечают на них. Иными словами, обычно происходит сложнейшая внутренняя переработка любых поступающих извне сообщений при участии промежуточных нейронов, и только после этого могут приниматься решения о внешних реакциях. "Скрытые слои" в моделях ПРО действуют наподобие промежуточных нейронов, и это намного повышает способность системы к обучению, обобщению и прогнозированию.

Коннекционистские модели привлекательны для промышленности и военных тем, что позволяют преодолеть прежние ограничения эффективности компьютерных систем. Но не меньший взрыв энтузиазма они вызвали и среди нейробиологов, многие из которых считают, что наконец получили модель, весьма сходную с мозгом или хотя бы с какими-то его отделами. В последние три года множество новых научных журналов публикует сообщения о моделях нейронных сетей, претендующих на объяснение различных аспектов работы мозга. Командиры и идеологи этой Армии Моделей беспрерывно кружат по всему свету, переезжая с одних авторитетных конференций и семинаров на другие и едва успевая заглянуть в собственные кабинеты и лаборатории, чтобы собрать новейшие данные и снова мчаться в аэропорт.

К ним начинают прислушиваться даже философы. Одной из книг, популярных среди нейробиологов, вообще-то не склонных к чтению философских трудов, стала недавно вышедшая "Нейрофилософия" Патриции Чёрчленд из Калифорнии [20]. Автор рассматривает традиционные философские проблемы сознания и сопоставляет их с данными современной нейробиологии, а затем приходит к выводу, что в ней властвует редукционизм. По мнению Чёрчленд, спасение - в коннекционистских идеях. Вслед за книгой она опубликовала в солиднейшем журнале "Science" пару статей в соавторстве с нейробиологом Терренсом Сейновским из Сан-Диего, где рассмотрены перспективы науки, которую они называют вычислительной нейробиологией [21]; теперь это название в свою очередь попадает в заголовки других книг и журналов. Тот факт, что философы, создатели моделей и нейробиологи начали прислушиваться друг к другу и что компьютерщики наконец-то стали с известным уважением относиться не только к искусственному, но и к природному мозгу, делает их анализы более обоснованными. Раньше энтузиасты искусственного интеллекта подходили к функции нервных клеток с предвзятым мнением и в результате очень скоро теряли всякое представление о реальных биологических явлениях, изучаемых нейробиологами. Однако восторженный прием, оказанный нейробиологами книге Чёрчленд, объясняется, на мой взгляд, тем, что она не оспаривает наши представления, а скорее демонстрирует довольно некритичное почтение к ним. В результате ее книга выглядит льстивым зеркалом, в котором нам дают увидеть себя в весьма привлекательном виде1. И дело не только в том, что в отражении мы не видим мелких дефектов своей кожи. Сама наша поза, по-редукционистски неудобная, выглядит позой голливудского героя. Тем не менее недостатки коннекционистской нейробиологии и порожденной ею философии очевидны и, я полагаю, в конце концов приведут к их краху по причинам, которые я постараюсь объяснить в дальнейшем.

Пока же вернемся ко второй из двух сестер в сказке Пейперта - "поддельной", или "холистической". При холистическом подходе не делалось попыток моделировать мозг - все внимание было сосредоточено на моделировании разума. Иными словами, разработчики старались понять те явления, которые они принимали за функции сознания, такие как "верование, слушание, наблюдение, ощущение, поиск, объяснение, требование, просьба..." (я привожу этот эклектичный, но очень характерный набор процессов из последней книги Минского "Общество разума" [22]). Затем они пытались моделировать логику этих процессов независимо от того, насколько создаваемые модели можно было уподобить настоящему мозгу. Важно было лишь то, чтобы модели "работали". Иными словами, они должны были давать на выходе такой результат, какой, по мнению разработчиков, давал бы человеческий мозг, если бы он выполнял те функции, которые они хотели воспроизвести в своих моделях.

И все же многие неиробиологи чувствуют себя не очень уютно, читая у Чёрчленд о редукционизме. Это обнаружилось пару лет назад на одной из конференций в Швейцарии, так любимых нейробиологами, где была возможность покататься на горных лыжах. Участники проводили в первой половине дня научные заседания, а до того и после того занимались делом, т. е. выходили на склон и вечером оставались там, пока не стемнеет или пока не иссякнут силы. Такое времяпровождение, вероятно, лучше всего попадает под хорошо известное определение "досуг после теоретизирования". Темой конференции были "взаимоотношения между нейроанатомией и психологией", а открывать дискуссию должна была Чёрчленд. Она взошла на редукционистскую кафедру и стала проповедовать грядущее сведение психологии к нейроанатомии, ожидая, по-видимому, лишь легкой критики со стороны группы нейробиологов. К своему удивлению, она столкнулась с сильной оппозицией большинства присутствующих, особенно из лагеря нейроанатомов!

Чтобы лучше понять разницу между двумя подходами, представьте себе, например, человека, стреляющего в тире по движущимся металлическим уткам. Приверженец коннекционистских моделей с параллельной обработкой информации спросил бы: как должны быть связаны нейроны, чтобы подвижные изображения передавались через сетчатку глаза в надлежащие области мозга ("скрытые слои"), и как должны при этом изменяться их свойства, чтобы они могли "научиться" вызывать соответствующие моторные реакции? Сторонник холистического подхода поставил бы вопрос иначе: как можно построить такой сервомеханизм, который получал бы информацию о положении и движении уток и соответственно управлял движениями стрелка? Будут ли. выходные реакции такого механизма сходны с реакциями человека, решающего ту же задачу? И если не будут, то почему?

На протяжении почти всей сорокалетней истории искусственного интеллекта преобладал второй из этих подходов. Однако, развивая его, разработчики совсем перестали думать о том, как работает настоящий мыслящий мозг. Вместо этого они сосредоточили внимание на решении проблем, связанных с конструированием силиконовых элементов компьютера и с разработкой математической логики. Это могло приводить к созданию более сложных и эффективных машин, но не имело никакого отношения к биологическим системам, которые вначале предполагалось моделировать. Общее мнение сторонников такого подхода откровенно выразила Маргарет Боден - философ из Суссекского университета - такими словами: "Чтобы быть мозговитым, мозги не нужны" [23].

Порочная метафора

К чему бы ни призывали разработчики моделей того или иного типа, я считаю, что оба подхода порочны в своей основе, если задача состоит в том, чтобы понять, как работают природный мозг и природный разум (или даже память). Отсюда и провал всех прежних предсказаний о возможных сроках создания искусственного интеллекта и появления компьютеров, подобных мозгу: наиболее оптимистичные последователи Винера в пятидесятых годах уверенно ожидали этого к концу шестидесятых, потом откладывали до семидесятых, восьмидесятых, а затем и на начало третьего тысячелетия. Но время шло, на смену персептронам приходили новые модели и программы и так же исчезали.

Недавно с критикой методологии и перспектив разработки искусственного интеллекта выступили три автора - философ, математик и иммунолог. Я кратко изложу их доводы, прежде чем перейду к моим собственным проблемам, связанным с вычислительной аналогией.

Первым идет философ Джон Сирл, который для аргументации своих взглядов ставит тест Тьюринга как бы с ног на голову. Представьте себе, что в закрытой комнате находится человек, который не знает китайского языка, но через машину получает вопросы, написанные по-китайски. В его распоряжении имеется код, позволяющий сопоставлять китайские иероглифы с другим набором текстов, содержащим ответы на задаваемые вопросы. Эти ответы можно передавать, опять-таки с помощью машины, за пределы комнаты. Находящимся снаружи наблюдателям будет ясно, что на заданные по-китайски вопросы поступают осмысленные ответы на том же языке; таким образом, тот, кто находится в комнате, выдержит тест Тьюринга. Но из этого никак не следует, что он понимал содержание посланий, поступавших в комнату и выходивших из нее, и отвечал на них сознательно и разумно: на самом деле он выполнял чисто автоматические операции. Именно это, говорит Сирл, делают компьютеры, и потому нет оснований считать их разумными и сознательными устройствами.

Второй автор - оксфордский математик Роджер Пенроуз, чья недавно вышедшая книга "Новый ум императора" содержит последовательную критику принципов коннещионизма [25]. Точка зрения Пенроуза по сути очень проста: для того чтобы эти принципы работали, в нейронной сети между клетками должны существовать достаточно стабильные, фиксированные отношения, которые могут изменяться лишь в ответ на специфические входные сигналы, после чего система должна реагировать детерминированным образом. По мнению Пенроуза, против этого говорят современные физические и математические представления. Квантовые механизмы, по его утверждению, обусловливают изначальную недепгерминированность нервных реакций; что касается математики, то ставшая весьма модной теория хаоса показывает, как недетерминированные системы могут тем не менее действовать вполне упорядоченным образом (например, случайное хаотическое движение молекул газа в сосуде приводит в целом к точной и предсказуемой зависимости между температурой, давлением и объемом, которую описывает простой газовый закон Бойля).

Таким образом, по мнению Пенроуза, стратегия редукционизма не выдерживает критики по двум взаимосвязанным причинам. Во-первых, недетерминированность на уровне нейронов и синаптических связей между ними означает, что мы никогда не сможем понять работу мозга и разума путем простого анализа составляющих компонентов, реакции которых непредсказуемы по самой своей природе. Во-вторых, эта неопределенность на уровне отдельных компонентов может, однако, обеспечивать предсказуемость на уровне всей системы. Поэтому сознание, разум, память возникают как свойства мозга в целом, а не как свойства его отдельных элементов.

Третьим критиком искусственного интеллекта и лежащих в его основе методов обработки информации выступает лауреат Нобелевской премии, иммунолог и теоретик из Рокфеллеровского университета Джералд Эделмен. В своем недавно вышедшем трехтомном труде [26] он пытается решить необычайно смелую задачу - создать общие теории биологии развития, нервной организации и сознания на основе аналогии, почерпнутой не из физики или техники, а из эволюционной теории и прежде всего из собственного понимания дарвиновского естественного отбора. Кое в чем я согласен с критикой Эделмена, хотя и не поддерживаю его в выборе аналогии; однако более подробное обсуждение этого вопроса требует дополнительных биологических сведений, которьгх я еще не дал читателю, и поэтому я откладываю его до последней главы. Сейчас я хотел бы поговорить о том, почему меня не удовлетворяет сравнение мозга, разума и памяти с компьютером и его вычислительными функциями.

Эта аналогия, столь завораживающая многих, всегда воспринималась с подозрением биологически мыслящими представителями нейронаук по причинам как структурного, так и организационного порядка. В структурном отношении платы с транзисторами, системы "и/или", логические схемы и другие элементы компьютеров совсем не похожи на аналогичные механизмы нейронов, если последние вообще можно рассматривать как единицы обмена информацией в пределах нервной системы. Функциональные единицы компьютеров детерминированы, имеют малое число входов и выходов, а процессы, осуществляемые ими с такой поразительной правильностью, протекают последовательно и свободны от ошибок. Элементы ЭВМ хранят и обрабатывают информацию по заданному заранее набору правил. Одно из следствий этого - то, что создатели компьютерных моделей мозга настойчиво пытаются конкретным образом воплотить отдельные типы процессов, в которых участвует разум или мозг. В частности, сама концепция искусственного интеллекта> подразумевает, что разумность есть просто свойство самой машины (я бы сказал, что такая материализация равно неприемлема и в отношении компьютеров, и в отношении мозга).

Сравнение мозга с компьютером несостоятельно, так как системы нейронов, образующие мозг, в отличие от компьютерных систем в высокой степени недетерминированы. В этом утверждении я иду даже дальше Пенроуза, поскольку я хочу подчеркнуть, что нельзя рассматривать мозг и его обладателей - прежде всего человеческий мозг и самого человека - как закрытые системы вроде молекул газа в запаянном сосуде. Совсем наоборот, это открытые системы, сформированные собственной историей и находящиеся в непрерывном взаимодействии с природным и общественным окружением, которое изменяет их, но и само при этом подвергается изменению. Такая открытость обусловливает еще один уровень неопределенности в работе мозга и поведении его владельца. В отличие от компьютеров мозг не функционирует безошибочно и действие его не ограничено последовательной обработкой информации; его организацию нельзя даже свести к небольшому числу скрытых слоев>. Каждый из нейронов центральной нервной системы имеет тысячи входов (синапсов), различных по значимости и по месту, откуда к ним приходят сигналы. (В мозгу человека имеется, по-видимому, до 1014 - 1015 синапсов, так что у каждого из нас в сотню тысяч раз больше межнейронных связей, чем людей, живущих сейчас на Земле!) Мозг отличается большой пластичностью, т. е. способностью изменять свою структуру, химию, физиологию и выходные реакции в результате приобретения опыта и случайных обстоятельств в процессе развития. В то же время он обладает большим запасом надежности и может весьма эффективно восстанавливать свои функции после травмы или инсульта.

Характеристики

Тип файла
Документ
Размер
436,88 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6862
Авторов
на СтудИзбе
271
Средний доход
с одного платного файла
Обучение Подробнее