115902 (617687), страница 2

Файл №617687 115902 (Экологические аспекты преподавания темы "Ванадий и его применение" в школьном курсе химии) 2 страница115902 (617687) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Содержание ванадия в сталях и чугунах составляет от 0,04 до 6 %. Реагируя с углеродом и азотом, он образует твердые тугоплавкие карбиды, нитриды и карбонитриды, вследствие чего сталь приобретает мелкозернистую структуру. Это способствует повышению прочности, упругости и износостойкости при одновременном сохранении пластичности металла и его способности свариваться. Кроме того, ванадий повышает ударную вязкость металла при пониженных температурах, снижает его склонность к старению и чувствительность к перегреву. Поэтому его применяют для легирования сталей, часто в комбинации с Сг, N1, Mo, W.

Основная доля ванадия потребляется в производстве конструкционных низколегированных сталей, используемых при изготовлении труб большого диаметра для магистральных газо- и нефтепроводов, протяженных мостов, резервуаров большой емкости, в транспортном машиностроении и автомобилестроении.

Ванадийсодержащие стали используют в производстве листового и рельсового проката, сортовой стали для высотных строений. Добавка ванадия к рельсовым сталям увеличивает прочность на растяжение, тем самым повышает износостойкость рельсов. Полностью или поверхностно закаленные рельсы из ванадиевой стали используют там, где существуют особо тяжелые условия эксплуатации. В России, где тонны железной руды перевозят на дальние расстояния, рельсы делают из специальных ванадиевых сталей для продления срока их эксплуатации.

Ванадиевую сталь используют для обшивки корпусов судов. Возрастающая конкуренция в судостроении интенсифицирует внедрение сталей, позволяющих осуществлять скоростную сварку во влажной среде. Расширяется использование ванадия в производстве сплавов на основе титана и других тугоплавких металлов, предназначенных для новой техники (авиационной, ракетной, ядерной энергетики). Содержание ванадия в этих сплавах составляет 0,8-6,0 %. Ванадий в сочетании с алюминием используют с целью придания требуемой прочности в сплавах титана, идущего на создание специальных батисфер для исследования океана на глубине 10 000 м. Добавление ванадия в алюминиевые сплавы улучшает их жаропрочность и свариваемость.

Благодаря высокой коррозионной стойкости в агрессивных химических средах ванадий — перспективный материал для химического машиностроения. Он служит основой сплавов со специальными свойствами, в том числе и сверхпроводящих. В последние годы перспективным стало применение ванадия в производстве аккумуляторных батарей. По оценкам ряда экспертов, использование его в окислительно-восстановительных батареях имеет много преимуществ для хранения энергии. Чистый металл используют в производстве электронных приборов, отдельных деталей рентгеновской аппаратуры и т. д.

Соединения ванадия находят широкое применение во многих областях промышленности, в частности в химической, как катализаторы, в органическом синтезе, при производстве полимерных материалов, в стекольной, керамической, текстильной, лакокрасочной, резиновой отраслях, в фотографии и кинематографии, медицине, сельском хозяйстве и т. д.

Мировые производственные мощности по выпуску"'оксида V205 на начало 2005 г. оценивались в 115 тыс. тонн в год. При этом его фактическое производство составило в период с 2000 по 2003 г. около 82 тыс. тонн в год (45-46 тыс. тонн ванадия). Соответствующие мощности по выплавке феррованадия достигают 80,5 тыс. тонн в год при фактическом объеме производства в 2000-2003 гг. около 56 тыс. тонн в год. Таким образом, загруженность мощностей в обоих случаях составляет около 70 %.

Мировой объем потребления ванадия в виде феррованадия в 2002-2003 гг. стабилизировался на уровне 35-37 тыс. тонн. Еще примерно 5-7 тыс. тонн ванадия в год потребляется на рынках ванадий-алюминиевых лигатур и химически чистого V205.

Подъему ванадиевой отрасли в 2004 г. способствовал рост производства и потребления стали в Китае. С учетом прогнозируемого увеличения производства стали до 1200 млн. тонн к 2010 г. можно предположить, что потребление феррованадия будет постепенно расти и достигнет уровня 43-47 тыс. тонн по ванадию.

В настоящее время главные производители ванадия — ЮАР, Китай, США и Россия (свыше 90 % выпуска). Получают ванадий и в Австралии, Новой Зеландии, Японии и Великобритании. Основными экспортерами ванадийсодержащих материалов (ванадиевый шлак, V205 и феррованадий) выступают ЮАР, Китай и Россия.

Российская ванадиевая отрасль представлена четырьмя основными предприятиями:

  • Качканарский горно-обогатительный комбинат "Ванадий" добывает ванадийсодержащую титаномагнетитовую руду, производит концентрат, агломерат и окатыши;

  • Нижнетагильский металлургический комбинат (НТМК), используя поставляемое ему сырье, производит ванадиевый чугун и ванадийсодержащий шлак;

  • Чусовской металлургический завод на основе того же сырья производит ванадиевый чугун, ванадийсодержащий шлак, V205, феррованадий;

  • ОАО "Ванадий-Тула", перерабатывая ванадийсодержащие шлаки НТМК, производит V205 и феррованадий.

Основные потребители ванадия — страны Западной Европы, США и Япония, которые выступают в роли нетто-импортеров.

Структура внутреннего потребления феррованадия в российской экономике принципиально не отличается от мировой. Предполагается, что в 2005 г. оно несколько вырастет и достигнет 2-2,2 тыс. тонн в год.

Существуют три основных способа извлечения ванадия: пирометаллургический, гидрометаллургический и гидрохимический.

При пирометаллургическом способе ванадий извлекают из ванадийсодержащего сталеплавильного (конвертерного) шлака. На долю пирометаллургии приходится около 70 % всего производимого ванадия, ее используют большинство производителей ванадия, в том числе китайские и российские предприятия, а также некоторые производители в ЮАР и США.

Технологическая схема переработки конвертерных ванадиевых шлаков (16-18 % V205) состоит из следующих этапов:

  • подготовки шлака к обжигу (дробление, размол, очистка от металловключений, смешение с реакционной добавкой);

  • окислительного обжига шихты в присутствии реакционно-способной добавки (Na2C03 или СаС03);

  • выщелачивания обожженной шихты водой и раствором серной кислоты;

  • осаждения ванадия из растворов в виде химического концентрата V205 или NH4V03;

  • сушки, плавки и грануляции химического концентрата V205.

Ванадиевые шлаки поступают на производство в кусках и измельчаются до тонкого порошка с размером частиц менее 0,1 мм. Наличие металлической фазы в шлаках требует их многократной обработки на магнитных сепараторах. Металлоотсев возвращают в начало металлургического процесса или используют для прямого легирования сталей и чугунов.

Одна из важнейших задач обжига ванадиевых шлаков — окисление низших оксидов железа, ванадия и марганца в высшие и образование растворимых соединений ванадия. При обжиге шлаков оксид V2О3 переходит в легкорастворимые соединения ванадия(У), окисляются дисперсное железо, монооксид железа и низшие оксиды марганца, перекристаллизовываются силикаты.

Процесс окисления шлаков может быть представлен следующими основными реакциями:

Оптимальный температурный интервал реакций — от 700 до 900 °С.

Окислительный обжиг шлаков ведут в трубчатых вращающихся печах. Обычно шлаки обжигают в присутствии солей натрия, что позволяет получать ванадаты, хорошо растворяющиеся в воде и разбавленных растворах кислот и карбонатов. Обжиг шлаков совместно с содой позволяет осуществлять процесс при более низких температурах, чем при добавлении других солей натрия.

Шихта из обжиговой печи с температурой от 550 до 620 °С поступает в барабанный холодильник, где орошается водой или оборотным раствором. Одновременно с охлаждением в барабане происходит измельчение спека до 0,15 мм помещенными в барабан металлическими катками.

Выщелачивание шихты начинается в барабанном холодильнике. Пульпа, проходя ряд насосов и реакторов с мешалками, выщелачивается и поступает на вакуум-фильтр. После фильтра раствор направляют на осаждение концентрата V205, а твердый остаток влажностью до 20 % — на сернокислотное выщелачивание. Применение серной кислоты как выщелачивающего реагента связано с тем, что разбавленные растворы этой кислоты в меньшей степени, чем другие минеральные кислоты, растворяют сопутствующие ванадию компоненты шлака.

Трехстадийное выщелачивание позволяет перевести в растворы 97,5-99,0 % V205, в том числе около 65 % на стадии водного выщелачивания.

Существующие способы выделения ванадия из растворов позволяют осадить его в виде химического концентрата, в состав которого входит один или несколько металлов или аммонийная группа NH. При осаждении V205 происходит нейтрализация щелочных растворов минеральными кислотами, а кислых — содой до рН 1,5-2,0. Затем раствор нагревают до 85-95 °С и выдерживают. При этом из него выпадает красно-коричневый осадок. Процесс осаждения пятивалентного ванадия можно представить в общем виде следующими реакциями:

Фильтрацию гидратной пульпы проводят на барабанных вакуум-фильтрах. Сырой остаток, содержащий около 60 % влаги, загружают в плавильную печь. Плавление осадка происходит при температурах 950-1100 °С. Расплавленный продукт вытекает через отверстие на боковой стенке плавильной печи по железному желобу на охлаждаемую водой вращающуюся поверхность стола, на котором застывает тонким слоем. С помощью съемного ножа слой разделяют на небольшие пластинки и направляют их в контейнеры.

Химический концентрат, содержащий после сушки до 92 % V205, используют для выплавки феррованадия и других сплавов. Феррованадий (35-80 % V) получают восстановлением ферросилицием или алюминием.

Гидрометаллургический способ предусматривает извлечение ванадия химическим выщелачиванием из обожженных титано-магнетитовых и ильменит-магнетитовых концентратов. Этот метод предъявляет жесткие требования к качеству перерабатываемых руд: высокое содержание ванадия в исходной руде и низкое — примесей.

Гидрохимический способ — это переработка вторичных материалов техногенного происхождения, таких, как отработанные ванадийсодержащие катализаторы, нефтяные остатки, нефтяной кокс, асфальтиты, зола от сжигания мазута, шлаки феррофосфорного производства, отходы переработки уран-ванадиевых руд и др.

Извлечение ванадия при этом осуществляется по различным гидрохимическим технологиям. Этот способ используют главным образом американские производители, а также в Великобритании и Японии. На его долю приходится около 10 % производимого ванадия. В настоящее время он является наиболее дорогостоящим.

Развитие технологий извлечения ванадия из вторичных материалов в США и Великобритании обусловлено в основном отсутствием в этих странах рудной базы ванадийсодержащего титаномагнетитового сырья. Кроме того, учитывается и наличие большого количества отходов других производств с высоким содержанием ванадия (до 50 %), а также жесткие экологические требования и высокие платежи за загрязнение окружающей среды.

ИСПОЛЬЗОВАНИЕ ТЕХНОГЕННЫХ РЕСУРСОВ

Структура ресурсов ванадия в нашей стране определяется наличием больших запасов ванадийсодержащих титаномагнетитовых руд. В связи с высокой стоимостью переработки и сложностью технологической схемы передела этих руд в настоящее время стала актуальной задача разработки технологий и создания производств по выпуску ванадиевой продукции из техногенного ванадийсодержащего сырья.

К ванадиевым ресурсам техногенного происхождения относятся золы и шлаки тепловых электростанций, отработанные катализаторы сернокислотного производства, шламы титанового и глиноземного производств, попутные продукты и вторичные материалы ванадиевого и феррованадиевого производств.

Один из видов такого сырья — материалы, образующиеся в котлоагрегатах ТЭС, сжигающих ванадийсодержащие мазуты и нефтеводяные эмульсии. В результате оксидные соединения ванадия концентрируются в зольных остатках, оседающих на поверхностях нагрева, или в шламах, образующихся в обмывочных растворах.

В некоторых странах ванадийсодержащие ЗШО ТЭС активно вовлекают в производственную сферу. В Канаде, США и Венесуэле ванадий, а также никель получают не только из нефти и битума, но и из ВЗШО, полученных в результате сжигания на ТЭС нефтепродуктов. Наиболее развито применение техногенного ванадийсодержащего сырья в Японии. Доля ванадийсодержащих нефтяных остатков, летучей золы, образующейся в топках, работающих на мазуте, и отработанных катализаторов в производстве феррованадия в Японии достигает 30 %.

В России переработка ВЗШО ТЭС в промышленных масштабах до сих пор не освоена. Если учесть все золоотходы, полученные при сжигании органического топлива за последние два-три десятилетия, то количество техногенного сырья окажется достаточным для производства около 100 тыс. тонн металлического ванадия. Количество этого сырья с каждым годом возрастает, несмотря на то, что практически все ТЭС в России не оборудованы системами пылеулавливания и до 90 % ванадия теряется в виде выбросов в атмосферу.

Таким образом, использование золошлаковых отходов продиктовано не только возможностью извлечения ванадия. Попутно может быть решена важнейшая экологическая задача утилизации отходов, занимающих значительные площади и представляющих опасность для окружающей среды, так как при взаимодействии с атмосферными осадками эти отходы выделяют в гидросферу токсичные органические вещества и тяжелые металлы.

Принимая во внимание истощение сырьевой базы и учитывая тот факт, что с каждым годом технологии переработки техногенного сырья совершенствуются, а затраты на производство V205 с использованием вторичного сырья постепенно приближаются к стоимости производства по традиционным технологиям, можно с уверенностью утверждать, что структура производства ванадия будет изменяться в сторону использования техногенных материалов.

Характеристики

Тип файла
Документ
Размер
552,22 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее