115863 (617673), страница 2
Текст из файла (страница 2)
Во время решения задач все действия необоходимо проговаривать. Если решение остается непонятым - повторить его.
При правильном подходе материал первого урока не вызывает сложностей у учащихся.]
1.1.3 Домашнее задание
Задача решается аналогично третей.
Задача 6. Человек забыл последние три цифры телефона, но, помня что они различны, набрал номер наудачу. Найти вероятность того, что был набран нужный номер.
Задача решается аналогично четвертой.
Задача 7. Вероятность попадания в цель при одном выстреле - 0.8.
- число попаданий в цель при трех выстрелах. Постоить ряд распределения.
1.2 Второй урок
1.2.1 Проверка домашнего задания
1.2.2 Введение понятий математического ожидания, среднеквадратичного отклонения и ковариации с.в.
Рассмотрим задачу 4 прошлого урока. Найдем сколько раз в среднем, выпадает четное число на кубике за три опыта. Кто нибудь знает? 1,5 - это понятно интуитивно. А теперь проверим при помощи формулы.
Величина
называется математическим ожиданием и показывает какая с.в. в среднем выпадает.
Свойства мат.ожидания.
1)
2)
3)
Задача 1. С.в. задана рядом распределения. Найти
.
Мат.ожидание - это величина, которая показывает какая с.в. в среднем выпадает. Но в некоторых случаях этой информации не достаточно. Например,нам известна средняя доходность акций, но для более рационального распределения средств необходимо знать на сколько может изменится эта доходность. Т.е. отклонение доходности. Для этого в МС используют среднеквадратичное отклонение
с.в.
.
Задача 2. Найдем
для задачи 1.
В нашем случае математическое ожидание - это средняя ожидаемая доходность, а среднеквадратичное отклонение - это риск ц.б.
Задача 3. Я задумал три цифры. Вы должны написать их в той же последовательности.
- это число угаданных вами цифр. Какие значения принимает
и с какой вероятностью. Найти математическое ожидание и среднеквадратичное отклонение.
Для решения нашей задачи по формированию портфеля необходимо учитывать как влияет одна с.в. на другую. Допустим у нас акции нефтедобывающих компаний двух видов. Если цены на нефть упадут, то доходность снизится у обеих ц.б. А если у нас ц.б. Лукойл и МТС, то падение цен на нефть слабо отразится на доходность компании связи. Реже встречаются случаи,когда падение цен одной ц.б. влечет за собой рост цен другой. В экономике две ц.б. у которых происходит одновременный рост называются ц.б. с прямой корреляционной зависимостью. Если одна ц.б. падает в цене, а другая растет, то это обратная корреляционная зависимость. Если же изменение цен одной не влечет измененение цен другой, то это бумаги называют некоррелированными.
Очевидно, нам придется вводить еще одну численную характеристику с.в.- ковариацию. Пусть даны с.в.
и
.
Ковариация
показывает зависимость с.в.
. Точнее, это коффициент корреляции показывает зависимость с.в.
-коффициент кореляции с.в.
и
. Он всегда меньше или равен единице. Причем если
, то с.в. связаны линейной зависимостью. Если
, то с.в. независимы.
При нехватке времени о коэффициенте корреляции можно не рассказывать, т.к. при решении поставленной задачи он не используется. Однако, он полезен для самоконтроля (
)
Задача 4. Случайные величины заданы таблицей распределения. Наити их ковариацию и коэффициент корреляции.
При введении дисперсии и ковариации необходимо записать основную формулу через мат.ожидание. Вызвать ученика к доске, и направляя его получить формулы удобные для использования на практике. При этом необходимо опираться на свойства математического ожидания, проговаривая или предлагая вспомнить подходящее ученикам. По ходу урока приходится неоднократно проговаривать что такое с.в., что показывает среднеквадратичное отклонение, коэффициент корелляции. Сложности возникают с тем, что школьники не привыкли обозначать математические величины двумя буквами. В этом случае можно провести аналогию между функцией и математическим ожиданием, показать что
- это аргумент, а
- это функция, которая переводит набор чисел
в число
.
Как показали проведенные уроки, данный урок занимает 2 академических часа. ]
1.2.3 Домашнее задание
Задача 5. Случайные величины заданы таблицей распределения. Наити их ковариацию и коэффициент корреляции.
1.3 Третий урок
1.3.1 Проверка домашнего задания
1.3.2 Введение понятий вектор, матрица
Пусть дан вектор на координатной плоскости. Как его можно записать? (Координатами (х,у).) А в пространстве? (x,y,z)А в каком пространстве живем мы? (4, (x,y,z,t)). Пара чисел (x,y) называется двухмерным вектором, тройка чисел (x,y,z) - трехмерным, (x,y,z,t)- четырехмерным. Их вводят для краткости записей и рассматривают как один элимент. Вектора можно обозначать, опять же для краткости.
В общем виде можно вектор можно записать так
. Это n-мерный вектор. Вектора бывают и бесконечномерные, но их мы рассматривать не будем.
Задание 1. Приведите примеры векторов.
Каким образом записывают результаты футбольных матчей? (При помощи таблиц.)
Пусть в группе В играли пять команд по круговой системе. Результаты игры отображены в таблице.
Где 2- победа,1- ничья,0- поражение.
Эту таблицу также можно назвать матрицей.
Опр. Таблицу вида
будем называть матрицей размерности
.
Для краткости будем обозначать матрицы большими латинскими буквами.
Вектор является частным случаем матрицы при m=1.
1.3.3 Умножение матриц. Свойства
Как сложить две матрицы?
Опр. Суммой матриц
и
размерности
называется матрица
размерности
.
Пример.
Как суммировать матрицы вы уже знаете. Теперь придумайте как умножить матрицу на число.
Опр. Произведением
матрицы
размерности
и числа
называется матрица
размерности
.
Пример.
Кроме введенных операций нам понадобится умножение матриц.
Опр. Произведением матриц
и
называется матрица
, где
Необходимо показать и озвучить практический способ умножения матриц: строка умножается на столбец. Берем первую строку матрицы А, ставим ее вертикально напротив первого столбца матрицы В, умножаем элементы этой строки и столбца, которые стоят напротив др.др., складываем произведения. Это первый элемент матрицы С. Теперь таким же образом умножаем эту строку на второй столбец - получаем второй элемент первой строки матрицы С. И т.д. Получим первую строку новой матрицы. Для того, чтобы получить вторую строку, проделываем тоже самое со второй строкой матрицы А.
Пример.
Задача 1. Выполнить умножение.
1.3.4 Домашнее задание
Задача 2. Выполнить умножение.
1.4 Четвертый урок
1.4.1 Проверка домашнего задания
1.4.2 Транспонирование
Опр. Замена строк матрицы на ее столбцы (а стольбцов на строки) называется транспонированием. Обозначается
.
Пример.
1.4.3 Определитель матрицы
Поставим каждой матрице по определенному правилу в соответствие число и назовем его определителем матрицы.
Например:
Таким образом вычисляют определители двхмерной и трехмерной матриц. Эта схема вычисления называется мнемоническим правилом. Для четырехмерной матрицы не удобно составлять такие схемы. Существует строгое правило нахождения определителя матрицы n-го порядка. Но мы будем работать только с трехмерными матрицами.
Необходимо обратить внимание на то, что матрица пишется в круглых скобках, а определитель матрицы - в прямых.
Задача 1. Найти определители матриц А и
из Примера.
Обратить внимание, на то что определитель матрицы не совпадает с определителем транспонированной матрицы.
Задача 2. Найти определители матриц.
1.4.4 Домашнее задание
Задача 3. Найти произведение матриц А и В из задачи 2. Вычислить определитель полученной матрицы.
Задача 4. Найти значение выражения
. Матрицы из задачи 2.
Необходимо сказать, что последовательность выполнения операций, такая же как и для чисел, но первым выполняют транспонирование.
1.5 Пятый урок
1.5.1 Проверка домашнего задания
1.5.2 Обратная матрица
Опр. Если
, то
обозначают
и пишут
.
Где
- матрица с единицами на главной диагонали и нулями на остальных местах. Показать главную диагональ.
Для того, чтобы найти обратную матрицу нам необходимо найти т.н. алгебраическое дополнение.
Пусть дана матрица
число
называется алгебраическим дополнением элемента
. Алгебраическое дополнение можно найти для любого элемента матрицы.
Опр. Алгебраическим дополнением элемента
называется произведение
на определитель матрицы после вычеркивания из нее i-й строки и j-го столбца.
Теперь можно найти и обратную матрицу.
Задача 1. Найти обратную матрицу.















