112821 (616612), страница 2

Файл №616612 112821 (Методика обучения решению задач на построение сечений многогранников в 10-11 классах) 2 страница112821 (616612) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Задача. Построить (рис.5а) точку пересечения произвольно заданной прямой а(а1) с проектирующей плоскостью φ.

Рис.5а

Для решения задачи проводим через заданную прямую а(а1) вспомогательную проектирующую плоскость и строим линию (х) пересечения вспомогательной и заданной проектирующих плоскостей. Точка Х(Х1) —точка пересечения прямых х и а на изображении— является изображением точки пересечения этих прямых, так как в оригинале эти прямые лежат в одной плоскости. Вместе с тем точка Х(Х1) будет точкой пересечения прямой а(а1) с проектирующей плоскостью φ.

В самом деле, точка Х(Х1) принадлежит прямым а(а1) и х. Прямая х, как линия пересечения плоскостей β и φ, принадлежит плоскости φ. Следовательно, и точка X(X1) принадлежит плоскости φ,т.е. действительно точка X(Х1) является точкой пересечения прямой a(a1) и заданной плоскости.

Сначала при выполнении чертежей 'полезно обозначать вспомогательные плоскости обрывами и обрезами так, как это сделано на рис. Позже, чтобы не загромождать чертежа посторонними линиями, от такого обозначения вспомогательных плоскостей следует отказаться и приучить учащихся воображать их.

Для закрепления решения этой задачи можно предложить следующую систему задач:

Точки А1 и В1 расположены на боковых ребрах куба ABCDA1 B1C1D1. Найти точку пересечения прямой (АВ) с плоскостью верхнего и нижнего основания.

Точки А1 и В1 расположены на смежных боковых гранях куба ABCDA1 B1C1D1. Найти точку пересечения прямой (АВ) с плоскостью нижнего основания.

Точки А1 и В1 расположены на двух смежных ребрах пирамиды ABCD. Найти точку пересечения прямой (АВ) с основанием пирамиды.

Даны тетраэдр ABCD и точки M и N, принадлежащие боковым граням. Постройте точку пересечения прямой MN с плоскостью ABC.

Точки Н и К расположены на соответственно на ребрах АВ и АD призмы ABCDA1B1C1D1. найти точку пересечения прямой (HF) с прямой (DC);(DD1).

Точки A1 и B1 расположены соответственно на ребрах АС и АВ пирамиды ABCD.Найти точку пересечения прямой (A1B1) с прямой (ВС).

Дана пирамида ABCDS.Найти точку пересечения прямой (AS) с прямой (ВК), где К-точка принадлежащая ребру CS.

Дана пирамида ABCDS. Найти точку пересечения прямой (АВ) с прямой (DH), где H-середина ребра BC.

Задача: Построить линию пересечения заданных проектирующих плоскостей

Рис. 6а

Пусть проектирующие плоскости заданы проектирующими прямыми АА1 и ВВ1 ТТ1 и РР1. Одной точкой линии пересечения заданных плоскостей будет точка Х1 —точка пересечения следов обеих плоскостей. В оригинале линия пересечения проектирующих плоскостей будет проектирующей прямой, как линия пересечения двух плоскостей, проведенных через параллельные (проектирующие) прямые. Следовательно, и на изображении прямая ХХ1, по которой пересекаются проектирующие плоскости, будет параллельна АА1.

Как решение этой задачи, так и всех остальных следует рассматривать через возможно большую совокупность частных случаев. Проектирующие прямые, определяющие проектирующие плоскости, могут располагаться так, что линия пересечения плоскостей будет находиться либо между одной из пар проектирующих прямых, либо между обеими парами. Проектирующие плоскости следует задавать не только одной парой проектирующих прямых, но и проектирующей прямой и точкой, лежащей в основной плоскости.

Во всех случаях решения следует связывать с построениями в оригинале. Если, например, проектирующую плоскость рассматривать как частокол с плотно примыкающими друг к другу кольями, то учащиеся должны понимать, что линия пересечения будет колом, который находится одновременно и в первой и во второй изгородях. Линию пересечения проектирующих плоскостей можно рассматривать как стык двух листов фанеры, являющихся образами проектирующих плоскостей.

Задача: Построить линию пересечения двух произвольно заданных плоскостей

Решение задачи в соответствии с выставленными принципами, понимание которых учащимся к этому моменту должно быть.подготовлено, не должно уже вызывать затруднений..В одной из заданных плоскостей (рис.5), например в плоскости φ(φ1), берутся две произвольные вспомогательные прямые а(а) и в(в) и строятся точки — точки Х(Х1) и Y(Y1) — пересечения этих прямых с плоскостью β(β1). Прямая XY(X1Y1)— искомая.

Рис. 5

В повседневной практике в качестве вспомогательных прямых выбирают те, которые имеются уже на чертеже: следы плоскостей, прямые, определяемые точками, задающими плоскость. Одна точка линии пересечения плоскостей, заданных на рис. 6, определяется как точка пересечения следов плоскостей — точка Х(Х1). В качестве второй вспомогательной прямой а(а,) взята прямая, лежащая в проектирующей плоскости РP1 ТT1.

Рис. 6

Для закрепления решения этой задачи можно предложить следующую систему задач:

Плоскость задана тремя точками, расположенными на смежных боковых ребрах пирамиды (призмы). Найти линию пересечения этой плоскости с плоскостью нижнего основания.

Плоскость задана тремя точками, расположенными на не смежных боковых ребрах пирамиды, в основании которой лежит четырехугольник. Найти линию пересечения этой плоскости с плоскостью нижнего основания.

Плоскость задана тремя точками, две из них расположены на смежных боковых ребрах пирамиды, а третья – на боковой грани пирамиды. Найти линию пересечения этой плоскости с плоскостью нижнего основания.

Дана четырехугольная пирамида SABCD. Построить линию пересечения двух ее граней ASB и CSD

Дана четырехугольная призма ABCDABCD. Найти линию пересечения плоскости, заданной точками В,К,L, где В-вершина основания, точка K принадлежит ребру DD1,точка L принадлежит ребру CC1,с плоскостью A1B1C1D1.

Точки О и О1 являются точками пересечения диагоналей оснований куба. Найти линии пересечения плоскости, заданной точками О, О1,С с боковыми гранями.

Дано SABCD - пирамида. Точка Н- середина DC. Найти линию пересечения плоскости, заданной точками A,H,S,с плоскостью SBC.

Но для полноценного решения задач на построении полезно на основании двух опорных задач (нахождении точки пересечения с плоскостью и линии пересечения плоскостей) рассмотреть задачи.

Задача 1. Найти точку пересечения плоскости Q, заданной следом ВС и точкой А(А1), с проектирующей прямой DD1 (рис. 7а).

П роводим плоскость R через точку А(А1) и данную прямую DD1 и на линии AM пересечения плоскостей Q и R находим искомую точку Х(Х1).

Рис 7а

Задача 2. Построить точку пересечения треугольника ABC(A1B1C1) с прямой DE (D1E1)

Рис 7б

Находим линию LM пересечения плоскости треугольника ABC с проектирующей плоскостью R, проходящей через данную прямую DE.

В пересечении прямых LМ и DE, лежащих в одной плоскости R, находим искомую точку X, которая на чертеже определяется своим изображением и изображением своей проекции Х1 на плоскость П.

Задача 3. Определить точку пересечения плоскости Q, заданной следом АВ и точкой С, с прямой DE (рис 7в).

Через точку С, принадлежащую плоскости Q, проводим вспомогательную плоскость S, параллельную проектирующей плоскости R, проходящей через данную прямую DE(LC1 || D1E1). Затем находим линию LC пересечения плоскости S с плоскостью Q. Далее строим прямую MX пересечения плоскостей О и R(MX || LC).

Точка X есть искомая точка пересечения, так как она одновременно принадлежит плоскости Q и прямой DE.

Рис 7в

Решением задачи заканчивается обоснование принципов построения прямых, по которым пересекаются плоскости, и точек пересечения прямых и плоскостей. Однако в классе следует решить еще несколько задач, решение которых сводится к построению точек и линий пересечения прямых и плоскостей.

Итак, при изучении задач на построение на проекционном чертеже учащиеся должны знать, что:

Точку пространства считают заданной на проекционном чертеже, если заданы изображение этой точки и изображение се проекции на основную плоскость.

Прямую считают заданной на проекционном чертеже, если заданы две ее точки или если заданы ее изображение и изображение ее проекции на основную плоскость.

Плоскость считается заданной на проекционном чертеже, если заданы три точки этой плоскости, не лежащие на одной прямой, или прямая и точка вне ее, или две пересекающиеся прямые, или две параллельные прямые.

Если все точки, прямые и плоскости изображенной фигуры являются заданными на проекционном чертеже в указанном смысле, то такое изображение называется полным и можно на нем построением отыскать все непустые пересечения прямых и плоскостей изображенной фигуры, т. е. решать различные позиционные задачи.

Решение задач на построение сечений

Работа по ознакомлению учащихся с проекционным чертежом может быть продолжена при обучении решению задач на построение сечений многогранников.

Обучение решению задач на построение сечений можно проводить в следующем плане.

Во-первых, первоначальное ознакомление учащихся с методами построения сечений следует проводить на метрически определенных изображениях. Удобно, например, это проделать на изображении куба и правильного тетраэдра, сопровождая построения на изображении демонстрацией соответствующих отношений на модели. Все это будет способствовать укреплению связи изображения и оригинала.

Во-вторых, точки, определяющие секущую плоскость, следует задавать по возможности при разнообразном взаимном расположении этих точек и многогранника, сечение которого строится.

Рис. 7

На рис.8 Приведена последовательность первых таких задач. Секущая плоскость на этих чертежах задается точками К(К1), М(М1) и Р(Р).

Рис. 8

При обучении решению как этих задач, так и любой из последующих учащимся следует выделять отдельные этапы решения, представляющие собой известные уже учащимся задачи на проекционном чертеже.

Рис. 9а

Рис. 9 б

Для построения сечения куба, представленного на рис. 9а, достаточно, например, найти точку пересечения ребра СС1 с плоскостью КМР (К1М1 Р1). Метод построения этой точки удобно раскрыть учащимся на примере решения уже известной им задачи: на проекционном чертеже (рис. 9б) построить точку пересечения плоскости β(β1)и проектирующей прямой СС1 На вспомогательном чертеже следует лишь по возможности точно воспроизвести взаимное расположение точек К(К1), M(M1), P(P1) и прямой СС1.

В порядке обеспечения преемственности в решении задач на проекционном чертеже важно подчеркнуть мысль, что в качестве вспомогательной плоскости СС1КК1 могла бы быть принята произвольная плоскость, проведенная через ребро СС1. Вместе с тем учащихся сразу следует приучать к рациональному выбору вспомогательных плоскостей.

При построении сечения куба (рис. 10а) плоскостью КМР (К1М1Р1) не следует препятствовать применению общего метода (рис. 10б). Однако решение этой задачи следует вести до тех пор, пока учащиеся не догадаются, что наиболее подходящей вспомогательной плоскостью будет плоскость грани BB1 CC, (рис. 10в), а не плоскости ВВ1ЕЕ1.

рис. 10а


Характеристики

Тип файла
Документ
Размер
11,66 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее