112769 (616592), страница 2
Текст из файла (страница 2)
3) дающая при её исследовании, в конечном счете, информацию о самом моделируемом объекте»(три перечисленных признака по сути являются определяющими признаками модели).
Данное определение, принадлежащее И.Б.Новику и А.А.Ляпунову Единственное замечание (скорее методологического плана) заключается в том, что автор рассматривает отражение «объект–система», вместо «система–система». Данный недочет вполне простителен, так как определение дано более 50 лет назад, когда уровень науки отличался от современного и теория систем находилась в стадии становления.
Для сравнения:
Опpеделение И.Т. Фpолова:
«Моделирование означает материальное или мысленное имитирование реально существующей системы путем специального констpуиpования аналогов (моделей), в котоpых воспpоизводятся пpинципы оpганизации и функциониpования этой системы».[22] Здесь в основе мысль, что модель —сpедство познания, главный ее пpизнак — отобpажение. В то же время механизм обратной связи (третий признак у Ляпунова) четко в определении не прослеживается.
В западной философии эталонным является определение, которое дает В.А. Штофф в своей книге «Моделиpование и философия»: «Под моделью понимается такая мысленно пpедставляемая или матеpиально peализуемая система, котоpая отобpажая или воспpоизводя объект исследования, способна замещать его так, что ее изучение дает нам новую инфоpмацию об этом объекте».[24, C.22] Оно практически полностью совпадает с определением Новика-Ляпунова, но имеет один недостаток — в определении не содержится указаний на относительный характер модели.
Глава II.
2.1 Моделирование в биологии
Модели в биологии применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций и экосистем.
В биологии применяются в основном три вида моделей: биологические, физико-химические и математические (логико-математические). Биологические модели воспроизводят на лабораторных животных определённые состояния или заболевания, встречающиеся у человека или животных. Это позволяет изучать в эксперименте механизмы возникновения данного состояния или заболевания, его течение и исход, воздействовать на его протекание. Примеры таких моделей — искусственно вызванные генетические нарушения, инфекционные процессы, интоксикации, воспроизведение гипертонического и гипоксического состоянии, злокачественных новообразований, гиперфункции или гипофункции некоторых органов, а также неврозов и эмоциональных состояний. Для создания биологической модели применяют различные способы воздействия на генетический аппарат, заражение микробами, введение токсинов, удаление отдельных органов или введение продуктов их жизнедеятельности (например, гормонов), различные воздействия на центральную и периферическую нервную систему, исключение из пищи тех или иных веществ, помещение в искусственно создаваемую среду обитания и многие другие способы. Биологические модели широко используются в генетике, физиологии, фармакологии.
Физико-химические модели воспроизводят физическими или химическими средствами биологические структуры, функции или процессы и, как правило, являются далёким подобием моделируемого биологического явления. Начиная с 60-х гг. 19 в. были сделаны попытки создания физико-химической модели структуры и некоторых функций клеток. Так, немецкий учёный М. Траубе (1867) имитировал рост живой клетки, выращивая кристаллы CuSО4 в водном растворе К4[Fе(СN)6]: французский физик С. Ледюк (1907), погружая в насыщенный раствор К3РО4 сплавленный СаСl2, получил — благодаря действию сил поверхностного натяжения и осмоса — структуры, внешне напоминающие водоросли и грибы. Смешивая оливковое масло с разными растворимыми в воде веществами и помещая эту смесь в каплю воды, О. Бючли (1892) получал микроскопические пены, имевшие внешнее сходство с протоплазмой; такая модель воспроизводила даже амебовидное движение. С 60-х гг. 19 в. предлагались также разные физические модели проведения возбуждения по нерву. В модели, созданной итальянским учёным К. Маттеуччи и немецким — Л. Германом, нерв был представлен в виде проволоки, окруженной оболочкой из проводника второго рода. При соединении оболочки и проволоки с гальванометром наблюдалась разность потенциалов, изменявшаяся при нанесении на участок "нерва" электрического "раздражения". Такая модель воспроизводила некоторые биоэлектрические явления при возбуждении нерва. Французский учёный Р. Лилли на модели распространяющейся по нерву волны возбуждения воспроизвёл ряд явлений, наблюдаемых в нервных волокнах (рефрактерный период, "всё или ничего" закон, двустороннее проведение). Модель представляла собой стальную проволоку, которую помещали сначала в крепкую, а затем в слабую азотную кислоту. Проволока покрывалась окислом, который восстанавливался при ряде воздействий; возникший в одном участке процесс восстановления распространялся вдоль проволоки. Подобные модели, показавшие возможность воспроизведения некоторых свойств и проявлений живого посредством физико-химических явлений, основаны на внешнем качественном сходстве и представляют лишь исторический интерес.
Позднее более сложные модели, основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. Так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, её отростке и в синапсе. Построены также механические машины с электронным управлением, моделирующие сложные акты поведения (образование условного рефлекса, процессы центрального торможения и пр.).
Значительно большие успехи достигнуты в моделировании физико-химических условий существования живых организмов или их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых вне организма клеток.
Модели биологических мембран (плёнка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов, — дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т. д.
Математические модель (математическое и логико-математическое описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математической модели и дают материал для её дальнейшей корректировки. Математическая модель в отдельных случаях позволяет предсказать некоторые явления, ранее не известные исследователю. Так, модель сердечной деятельности, предложенная голландскими учёными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математической модели физиологических явлений следует назвать также модель возбуждения нервного волокна, разработанную английскими учёными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских учёных У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов. Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А. Н. Колмогоров). Марковская математическая модель процесса эволюции построена О. С. Кулагиной и А. А. Ляпуновым. И. М. Гельфандом и М. Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. В частности, показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков — синергий, а не путём независимого управления каждой мышцей. Создание и использование математических и логико-математических М., их совершенствование способствуют дальнейшему развитию математической и теоретической биологии.
Метод моделирования в биологии является средством, позволяющим устанавливать все более глубокие и сложные взаимосвязи между биологической теорией и опытом. В последнее столетие экспериментальный метод в биологии начал наталкиваться на определенные границы, и выяснилось, что целый ряд исследований невозможен без моделирования. Если остановиться на некоторых примерах ограничений области применения эксперимента, то они будут в основном следующими: (19 с15)
- эксперименты могут проводиться лишь на ныне существующих объектах (невозможность распространения эксперимента в область прошлого);
- вмешательство в биологические системы иногда имеет такой характер, что невозможно установить причины появившихся изменений (вследствие вмешательства или по другим причинам);
- некоторые теоретически возможные эксперименты неосуществимы вследствие низкого уровня развития экспериментальной техники;
- большую группу экспериментов, связанных с экспериментированием на человеке, следует отклонить по морально - этическим соображениям.
Но моделирование находит широкое применение в области биологии не только из-за того, что может заменить эксперимент. Оно имеет большое самостоятельное значение, которое выражается, по мнению ряда авторов (19, 20,21), в целом ряде преимуществ:
1. С помощью метода моделирования на одном комплексе данных можно разработать целый ряд различных моделей, по-разному интерпретировать исследуемое явление, и выбрать наиболее плодотворную из них для теоретического истолкования;
2. В процессе построения модели можно сделать различные дополнения к исследуемой гипотезе и получить ее упрощение;
3. В случае сложных математических моделей можно применять ЭВМ;
4. открывается возможность проведения модельных экспериментов (синтез аминокислот по Миллеру) (19 с152).
Все это ясно показывает, что моделирование выполняет в биологии самостоятельные функции и становится все более необходимой ступенью в процессе создания теории. Однако моделирование сохраняет свое эвристическое значение только тогда, когда учитываются границы применения всякой модели.
2.2 О формах моделирования биологических понятий
Построение моделей как одна из сторон диалектической пары противоположностей анализ-синтез имеет много аспектов, из которых некоторый выдвигается на первый план.
Особенно существенным при построении моделей является аспект отражения, понимаемого в смысле теории познания.
Каждая модель хранит знания в надлежащей форме; при этом запоминание знаний, как правило, связано с уменьшением избыточности. Поэтому каждая модель имеет также языковую функцию. Содержание знаний является семантической стороной; способы, с помощью которых знания вводятся в модель, кодируются в ней, являются синтаксической стороной. Последний языковой компонент имеет большое значение при активизации модели при каждом приведении ее в действие.
Но в то же время модель в своей функции как структура для хранения знаний является связующим звеном между теоретическим и эмпирическим познанием. Фразу «нет ничего проще хорошей теории» следует воспринимать дословно. Формализованная теория позволяет описать большое число частных фактов с помощью наибольшего числа основных результатов. Следовательно, главное назначение теории – в уменьшении избыточности, обусловленной изобилием частных фактов, и связанных с этим более глубоким познанием закономерных связей.
В основе каждой модели лежит более или менее развитая теория отображаемого объекта; эта теория укладывается в синтаксически установленные рамки, в концепцию системы, положенную в основу конкретного построения модели.
Системная концепция фиксирует общие рамки модели, иначе говоря, определяет структуру памяти модели. Конкретная форма модели, в которой она может действовать в качестве замены только одного конкретного объекта, получается благодаря тому, что экспериментальные, то есть эмпирические, данные приводятся в соответствии с этими рамками, то есть для параметров модели, ее степеней свободы шаг за шагом устанавливаются все более достоверные значения. В этом смысле каждая разработанная модель выражает компромисс между теорией и практикой, между теоретическими познаниями и эмпирическими данными.
Основным стержнем системы развивающего обучения является деятельностный подход. Поэтому содержание обучения задано в виде способов детских действий, а значит, результатом такого обучения будет ряд способностей, которыми овладеют дети в ходе обучения. Но какие именно человеческие способности кроются в способах работы с биологическими объектами? Какие из этих способностей уместно делать предметом школьного курса обучения биологии? Что такого особенного есть в биологии, чего не может дать детям изучение химии, физики и истории? Таким образом, я, как будущий учитель биологии, должна найти то уникальное, что бы показать, что мой предмет может дать формирующемуся сознанию ученика.
Для биологии ключевым словом является слово «развитие». Философы биологии все чаще обращают внимание на то, что биология со времени Ч.Дарвина все более формируется как наука о возникновении и развитии органического мира. Преимущественное внимание именно к аспекту развития до сих пор отличает биологию от физики и химии, как бы ни усиливалась ее зависимость от этих наук.
Усвоение понятия развития предполагает овладение особым способом рассмотрения живого – потенциальным действием с ним. Овладение понятием развития помогает становлению у человека способности к осторожной и внимательной оценке событий, умению видеть эти события в связи с другими, а не изолированно; способности предвидеть разные возможные варианты развертывания событий, последствия вмешательства в динамику сложных системных объектов; способности реконструировать ход уже свершившегося процесса. Это и есть, с моей точки зрения, те базовые компетентности, которые возможно формировать у школьников на биологическом материале при соответствующем построении содержания, форм и методов учебной работы. Очень важно отметить то, что, хотя эти способности могут и должны быть выращены у каждого человека именно в ходе изучения биологии (на биологическом материале), они могут быть применены в самых разных сферах повседневной социальной жизни людей. Поэтому такой базовый курс школьной биологии будет нужен всем без исключения подросткам.
При изучении любого раздела биологии, важно не только продемонстрировать учащимся, но и предоставить им возможность самим убедиться в том, что каждый специальный термин несет в себе информацию о природе явления, структуре объекта, принципе работы объекта, его свойствах, взаимной связи структуры вещества с его свойствами, строения объекта с его функционированием. [11]
Учащиеся часто не соотносят между собой теоретические знания об объекте исследования и его строением, попросту говоря, не могут по описанию составить «портрет» объекта, и наоборот. Путают понятия: вещество - тело, структура вещества - форма тела, структурные единицы - части целого. Применение в обучении информационных устройств: компьютера, телевизора, магнитофона, мобильного телефона, принтера, интерактивной доски позволяет по-новому решать учебные задачи. Однако электронные модели не всегда дают полное представление об объекте. Вследствие чего мы предлагаем проводить занятия по моделированию биологических объектов с использованием пластилина.