90555 (612799), страница 3

Файл №612799 90555 (Анализ оценки состояния людей, больных сахарным диабетом в Красноярском крае) 3 страница90555 (612799) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Построив функции перекрестной корреляции Y и факторных признаков, проанализируем полученные коэффициенты корреляции и лаговой корреляции. Для всех коэффициентов, кроме х3, принят уровень значимости α=5%, для х3 принят α=10 % .


Рис. 3.1. Функция перекрестной корреляции У и Х1 (процент людей, которые перенесли вирусный гепатит)

Анализируя рассчитанные коэффициенты, можно сделать вывод, что корреляционная связь между уровнем процентов людей, которые перенесли гепатит и процентом людей, у которых сахарный диабет передался по наследству (рис. 3.1), невысока и статистически незначима (коэффициент корреляции rx1y=0,2294). Такая ситуация может быть объяснена тем, что процент людей, которые перенесли вирусный гепатит оказывает косвенное влияние на процент людей, болеющих сахарным диабетом.


Рис. 3.2. Функция перекрестной корреляции У и Х2 (процент людей, страдающих излишним весом)

Статистически значимой связи между процентом людей, болеющих сахарным диабетом и процентом людей, страдающих излишним весом (Х2) в ходе исследования обнаружено не было: коэффициент корреляции и коэффициенты лаговой корреляции между этими показателями невысоки и статистически незначимы на уровне 5% (рис. 3.2). Такая ситуация может быть объяснена тем, что не все полные люди обязательно болеют сахарным диабетом (т.е. х2 оказывает на У не непосредственное, а косвенное влияние), это могут быть: бывшие спортсмены; женщины после родов; люди, бросившее курить и др.


Рис. 3.3. Функция перекрестной корреляции У и Х3 (процент людей, у которых болезнь эндокринной системы)

Коэффициент лаговой корреляции с лагом равным 0, значимый на 10%-ном уровне, показывает наличие прямой сильной связи между признаками Х3 и Y (r=0,7265), что говорит о влиянии на процент людей, болеющих сахарным диабетом такого показателя, как процент людей, у которых болезнь эндокринной системы (х3).Это говорит о том, что подтвердилась гипотеза, так как сахарный диабет – это и есть заболевание эндокринной системы.


Рис. 3.4. Функция перекрестной корреляции У и Х4 (процент людей, у которых сахарный диабет передался по наследству (наследственная предрасположенность)).

Коэффициент лаговой корреляции с лагом 4, значимый на 5%-ном уровне, показывает наличие прямой умеренной связи между признаками как Х4 и Y (r=0,6283),так и обратной между У и Х4 (r= -0,605): процент людей, у которых сахарный диабет оказывает большое влияние на болеющих сахарным диабетом с наследственной предрасположенностью и наоборот, чем больше людей, у которых наследственная предрасположенность к сахарному диабету, тем больше в дальнейшем больных сахарным диабетом. Но х4 в большей степени влияет на у, так как из-за репродуктивной функции людей с наследственной предрасположенностью все больше рождается людей, больных сахарным диабетом. Это говорит о том, что подтвердилась гипотеза о воздействии этого показателя на число больных.


Рис. 3.5. Функция перекрестной корреляции У и Х5 (процент людей, с острыми кишечными заболеваниями)

Гипотеза о наличии связи процента людей с ОКЗ и процентом болеющих сахарным диабетом статистически не подтвердилась: коэффициент корреляции и коэффициенты лаговой корреляции оказались невелики и незначимы на уровне 5% (рис. 3.5).

Таблица парных коэффициентов корреляции показателей с уровнями

Значимости по новым данным

Y

X1

X2

X3

X4

X5

Y

1,0000

,2211

,1599

,5640

,7294

-,1510

p= ---

p=,513

p=,620

p=,071

p=,011

p=,658

X1

,2211

1,0000

-,2864

-,1358

-,0557

,4157

p=,513

p= ---

p=,393

p=,691

p=,871

p=,204

X2

,1599

-,2864

1,0000

,1763

,2854

-,4720

p=,620

p=,393

p= ---

p=,604

p=,395

p=,056

X3

,5640

-,1358

,1763

1,0000

,1244

-,4779

p=,071

p=,691

p=,604

p= ---

p=,634

p=,052

X4

,7294

-,0557

,2854

,1244

1,0000

-,4435

p=,011

p=,871

p=,395

p=,634

p= ---

p=,172

X5

-,1510

,4157

-,4720

-,4779

-,4435

1,0000

p=,658

p=,204

p=,056

p=,052

p=,172

p= ---

2.4. Построение регрессионной модели.

На предыдущем этапе была исследована взаимосвязь результирующего признака Y с каждым из признаков факторного набора. В результате была обнаружена статистически значимая на уровне 5% прямая умеренная связь Ус фактором х4, причем влияние фактора х4 на результирующий признак происходит с временным лагом τ=4, и была обнаружена статистически значимая на уровне 10% прямая сильная связь между х3 и у, влияние фактора х3 на результирующий признак происходит с временным лагом τ=0 . Построим множественную регрессионную модель, отражающую зависимость количества людей, у которых наследственная предрасположенность к сахарному диабету(х4) болезнь эндокринной системы(х3) на количество людей с сахарным диабетом(Y). Для построения модели ряд х4 предварительно сдвигаются относительно ряда Y на 4 периода, а х3 остается на месте.

Y_1 D(-1)

X1_1 D(-1); D(-1)

X2_1 D(-1)

X3_1 D(-1)

X4_1 D(-1); D(-1)

1

0,077

0,012

0,027

-0,034

2

0,023

-0,003

0,049

0,019

-0,070

3

0,360

-0,004

0,023

0,031

-0,038

4

0,110

0,007

-0,010

0,003

-0,054

5

0,174

0,051

0,040

0,020

-0,002

0,035

6

0,026

-0,034

0,060

0,030

-0,002

0,021

7

0,080

-0,004

0,016

0,050

0,002

0,059

8

0,250

0,084

0,031

0,048

-0,028

0,044

9

-0,400

0,002

0,002

0,002

0,005

0,029

10

0,176

-0,052

0,025

0,076

-0,001

-0,021

11

-0,076

0,003

0,062

0,042

0,013

-0,017

12

0,190

0,018

0,047

0,131

0,002

-0,033

13

0,010

-0,029

0,034

0,053

-0,006

-0,026

14

0,350

0,016

0,081

0,089

0,006

-0,013

15

0,090

-0,034

0,318

0,159

0,002

-0,115

16

0,030

0,029

0,023

0,060

0,007

-0,009

Построение множественной регрессионной модели:

Таблица1. Результаты регрессионного анализа

R= ,68548172 R?= ,46988518 Adjusted R?= ,41098354

F(1,9)=7,9775>Fтабл=4,6 p<,01990 Std.Error of estimate: ,15081

Beta

Std.Err. of Beta

B

Std.Err. of B

t(9)

p-level

Intercept

0,07683

0,045634

1,683522

0,000001

X4

0,685482

0,242697

13,13043

4,648864

2,824439

0,000027

Х3

0,601229

0,224326

0,100278

0,037415

2,68016

0,000234

Y=0,07683+0,100278х3+13,13043x4- полученное уравнение.

Исследуем на адекватность построенное линейное уравнение регрессии:

Для исследования полученной модели на адекватность воспользуемся:

1.Коэффициентом детерминации;

2.критерием Фишера;

3.критерием Стьюдента;

4.проведем анализ остатков.

Общий и скорректированный коэффициент детерминации

R= ,68548172 R?= ,46988518 Adjusted R?= ,41098354

Оба этих коэффициента не сильно близки к 1. Следовательно, можно сделать вывод об умеренном влиянии факторных признаков на результирующий показатель.

Критерий Фишера

Проверим на значимость генеральное уравнение линейной регрессии Y=0+1Т

Построим гипотезы:

Но : уравнение не значимо (0=1=0);

Н1 : уравнение значимо. (j0).

1.Если Fрасч >Fтабл, то с вероятностью не менее 95% можно утверждать, что принимается гипотеза Н1.

2.Если модуль Fрасч табл, то с вероятностью 95% нельзя утверждать, что принимается гипотеза Н1.[10]

=0.05; 1 =1; 2=14;

F0,05;1;92 =4,6

Fрасчет. =7,9775

Это означает, что с вероятностью не менее 95% можно утверждать, что уравнение значимо.

Критерий Стьюдента

На основе данных последней таблицы можно говорить о значимости коэффициентов регрессии βj :

t0= 1,683522 βo значим на уровне 0,000001

t1=2,824439 β1 значим на уровне 0,000027

t2=2,68016 β2 значим на уровне 0,000234

Анализ остатков

Для полученной модели проведем проверку условий Гаусса-Маркова.

Построим график распределения остатков на нормальной вероятностной бумаге и гистограмму остатков.

Рис. 4.1. График распределения остатков на нормальной вероятностной бумаге.

Рис. 4.2. Гистограмма остатков

С помощью гистограммы и графика на нормальной вероятностной бумаге делаем вывод о том, что распределения остатков близко к нормальному закону распределения. Следовательно, можно проанализировать выполнение условий Гаусса-Маркова.

Проверка условий Гаусса-Маркова:

1-ое и 4-ое условия

Рис7. Математическое ожидание остатков

Из данного графика можно сделать вывод о том, что математическое ожидание остаточной компоненты равно нулю, т.к. линия математического ожидания находится на нулевом уровне, и остатки независимы с объясняющей переменной, т.к. коэф.корреляции=0. Следовательно, 1 и 4 условия Гаусса-Маркова выполняются.

2-ое условие:

.

Рис8. Дисперсия остатков

Из графика видно, что линия дисперсий остатков не параллельна оси Х, наклон идет вверх, дисперсия случайного возмущения увеличивается.

Следовательно, 2-ое условие Гаусса-Маркова не выполняются

3-е условие (проверка автокорреляции остатков):

Критерий Дарбина-Уотсона:

Durbin- Watson d

Serial Corr.

Estimate

2,558753

-0,302355

Табличное значение коэффициента d при N = 14, m = 1 составляет dн =1,045 и dв= 1,330; 4-dв=2,670

Т. к. расчетное значение d=2,558753, то принадлежит промежутку (dв;4-dв), автокорреляция отсутствует. Условие выполняется.

Таким образом, можно сделать вывод, что модель адекватна, хотя выполняются не все условия Гаусса – Маркова (не выполняется 2 условие), но уравнение значимо по критерию Фишера и Стьюдента.

Заключение

В результате исследования было выявлено, что основными причинами болезни сахарного диабета в городе Красноярске с 1991 года по 2007 год являются наследственная предрасположенность и больные эндокринной системы, как и предполагалось в первой главе курсовой. Это означает, что вероятнее всего заболеть тем людям, у которых родственники болеют сахарным диабетом и тем, у кого имеется болезнь эндокринной системы.

Исследуя эту тему, я глубоко изучила сахарный диабет, это очень страшная болезнь, которая влияет на весь человеческий организм.

И чтобы хоть немного уменьшить вред от диабета нужно самое главное - регулярно посещать врача и выполнять его рекомендации по поводу диабета:

1.Соблюдать диету!

2.Витамины. Увы, но большая часть людей, включая больных диабетом, страдает заболеваниями желудка и кишечника, поэтому даже если они регулярно едят фрукты и овощи или принимают витаминные драже, они все же страдают от дефицита витаминов. Диабетикам рекомендуется два раза в год делать курсы внутримышечных инъекций витаминов. После таких курсов часто улучшается общее самочувствие, уменьшаются боли в ногах, общее течение диабета улучшается.

3.Сосудистые лекарства, средства, защищающие почки, лекарства от повышенного давления. Давление у диабетика должно быть нормальным (не выше 140/90)! От этого напрямую зависит продолжительность жизни. 4.Физиотерапия.

5.Массаж. Ежедневный массаж стоп поможет избежать осложнений диабета.

6.Физкультура.

Библиографический список

[1] Эндокринология Сибири: материалы второй сибирской конференции эндокринологов.2003

[2] Полная энциклопедия «Жизнь и здоровье женщины»,том 1, М:олма-пресс,2001

[3] www.dialand.ru

[4] Здоровье населения и здоровье Красноярского края,2005,выпуск 1

[5] Федеральная служба гос. Статистики «Экономика Красноярского края в 2006 году (статистический ежегодник, № 1-12) г. Красноярск, 2007

[6] Здравоохранение и социальное обеспечение в г. Красноярске в 2000 г.: Статистический бюллетень, 2001

[7] Здравоохранение и социальное обеспечение в г. Красноярске в 2002 г.: Статистический бюллетень, 2003

[8] Госкомстат России Красноярского краевого комитета государственной статистики/Здравоохранение и социальное обеспечение в Красноярском крае в 2003 г., 2004

[9] Лапо, В.Ф. Теория вероятностей, математическая статистика и эконометрика/учебное пособие, книга вторая/ Красноярск,1999

[10] Бородич, С.А., Эконометрика/учебное пособие, 3-е издание/ Минск:000 «Новое знание», 2006

Характеристики

Тип файла
Документ
Размер
7,58 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6689
Авторов
на СтудИзбе
290
Средний доход
с одного платного файла
Обучение Подробнее