86363 (612732), страница 2

Файл №612732 86363 (Оценка погрешностей измерений) 2 страница86363 (612732) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

fk = Nk/NД= Рk

есть вероятность, приходящаяся на единицу длины интервала разбиения или плотность вероятности попадания случайной величины в интервал Дk с центром в точке xk.

Площадь каждого прямоугольника

fkД= Nk/N= Рk

есть вероятность попадания результата в интервал Дk.. Сумма площадей прямоугольников, основания которых находятся внутри некоторого интервала [x1, x2], равна вероятности для каждого отдельного наугад взятого результата попасть в этот интервал.



Расчетная часть

В математической статистике исходная исследуемая случайная величина называется генеральной совокупностью, а полученный из нее набор экспериментальных данных – выборочной совокупностью, или выборкой.

  1. Число объектов (наблюдений) в совокупности, генеральной или выборочной, называется ее объемом; обозначается соответственно через N и n. В данном случае N=100.

  2. Числа ni , показывающие сколько раз встречаются варианты xi в ряде наблюдений, называются частотами, а отношение их к объему выборки – частостями pi.

, (1)

где .

Проранжируем статистические данные. Для определения оптимального значения величины интервала в первом приближении можно воспользоваться формулой Стерджеса

(2)

Воспользовавшись (2) получим , .

В соответствии с (1) и (2) составим интервальный статический ряд:

Таблица 1

Итервальный статический ряд

Интервал

69,768-70,509

70,509-71,25

71,25-71,991

71,991-72,732

72,732-73,473

73,473-74,214

74,214-74,955

74,955-75,696

75,696-76,437

Частота

2

11

11

20

24

16

11

4

1

Частость pi

0,02

0,11

0,11

0,2

0,24

0,16

0,11

0,04

0,01

Рисунок 1. Диаграмма частоты в выбранных интервалах

  1. Медианой вариационного ряда называется значение признака, приходящееся на середину ряда. В нашем случае имеем:

  1. Размахом вариации называется число

,

где или – наибольший, – наименьший вариант ряда.

  1. Выборочным средним называется среднее арифметическое всех значений выборки:

В случае интервального статистического ряда в качестве следует брать середины интервалов, а - соответствующие им частости.

  1. Выборочной дисперсией Dв называется среднее арифметическое квадратов отклонений значений выборки от выборочной средней, т.е.



  1. Выборочное среднеквадратическое отклонение выборки определяется формулой:

  1. Эмпирической (статистической) функцией распределения называется функция , определяющая для каждого значения x частость события : . Для нахождения эмпирической функции записывают в виде:

где n – объем выборке, nx – число наблюдений, меньших х. Согласно (7) определим значения эмпирической функции распределения в выбранных интервалах.

График эмпирической функции распределения имеет вид.

Одной из важных задач математической статистики является установление теоретического закона распределения случайной величины, характеризующей изучаемый признак по эмпирическому распределению, представляющему вариационный ряд.

Проверим при уровне значимости гипотезу о том, что исследуемая выборка подчиняется нормальному закону распределения.

Рисунок 2. График эмпирической функции распределения

Число наблюдений в крайних интервалах меньше 5, поэтому объединим их с соседними. Получим следующий ряд распределения ( n=100).

Интервалы

Частота k

Середина интервала Xcp

69,768-71,25

13

70,694

71,25-71,991

11

71,62

71,991-72,732

20

72,362

72,732-73,473

24

73,102

73,473-74,214

16

73,844

74,214-74,955

11

74,584

74,955-76,437

5

75,377

Вычислим параметры, определяющие нормальный закон распределения.



Так как случайная величина имеет нормальное распределение, то для расчета вероятностей попадания случайной величины X в интервал используем функцию Лапласа в соответствии со свойствами нормального распределения:

Полученные результаты приведем в следующей таблице:

Xi, Xi+1

69,768-71,25

71,25-71,991

71,991-72,732

72,732-73,473

73,473-74,214

74,214-74,955

74,955-76,437

ni

13

11

20

24

16

11

5

n`=n∙pi

10,2

14,5

20,92

22,46

17,69

9,03

5,2

Определим критерий Пирсона:

Находим число степеней свободы. По выборке рассчитаны два параметра, значит . Количество интервалов . Следовательно, . Зная, что , по таблице находим . Поскольку считаем гипотезу верной.

  1. Осуществим разбиение выборки на произвольное число интервалов, тем самым визуализировав вид плотности распределения случайной величины.



Таблица 2

Разбиение выборки на 20 и 30 интервалов

№ интервала

Интервал

Частота, ki

Интервал

Частота, ki

1

70,138-70,327

1

70,138-70,422

2

2

70,327-70,516

1

70,422-70,705

4

3

70,516-70,705

4

70,705-70,988

2

4

70,705-70,893

1

70,988-71,271

6

5

70,836-71,082

2

71,271-71,554

3

6

71,082-71,271

5

71,554-71,837

5

7

71,271-71,459

2

71,837-72,120

4

8

71,,459-71,648

2

72,120-72,403

9

9

71,648-71,837

4

72,403-72,686

6

10

71,837-72,026

3

72,686-72,969

9

11

72,026-72,214

4

72,969-73,252

11

12

72,214-72,403

6

73,252-73,535

8

13

72,403-72,592

4

73,535-73,818

4

14

72,592-72,781

7

73,818-74,101

7

15

72,781-72,969

4

74,101-74,384

8

16

72,969-73,158

8

74,384-74,667

4

17

73,158-73,347

6

74,667-74,950

3

18

73,347-73,536

5

74,950-75,233

2

19

73,536-73,725

4

75,233-75,517

1

20

73,725-73,913

3

75,517-75,8

2

21

73,913-74,102

4

22

74,102-74,291

7

23

74,291-74,480

2

24

74,480-74,668

3

25

74,668-74,857

3

26

74,857-75,04

1

27

75,04-75,23

1

28

75,23-75,423

1

29

75,423-75,612

1

30

75,612-75,801

1



Характеристики

Тип файла
Документ
Размер
3,99 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее