86131 (612657), страница 2

Файл №612657 86131 (Нейронные сети) 2 страница86131 (612657) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Обучение нейронной сети может вестись с учителем или без него. В первом случае сети предъявляются значения как входных, так и желательных выходных сигналов, и она по некоторому внутреннему алгоритму подстраивает веса своих синаптических связей. Во втором случае выходы нейросети формируются самостоятельно, а веса изменяются по алгоритму, учитывающему только входные и производные от них сигналы.

Существует великое множество различных алгоритмов обучения, которые делятся на два больших класса: детерминистские и стохастические. В первом из них подстройка весов представляет собой жесткую последовательность действий, во втором – она производится на основе действий, подчиняющихся некоторому случайному процессу.

Развивая дальше вопрос о возможной классификации нейронных сетей, важно отметить существование бинарных и аналоговых сетей. Первые из них оперируют с двоичными сигналами, и выход каждого нейрона может принимать только два значения: логический ноль ("заторможенное" состояние) и логическая единица ("возбужденное" состояние). К этому классу сетей относится и рассмотренный выше перцептрон, так как выходы его нейронов, формируемые функцией единичного скачка, равны либо 0, либо 1. В аналоговых сетях выходные значения нейронов спо­соб­ны принимать непрерывные значения, что могло бы иметь место после замены активационной функции нейронов перцептрона на сигмоид.

Еще одна классификация делит нейронные сети на синхронные и асинхронные[3]. В первом случае в каждый момент времени свое состояние меняет лишь один нейрон. Во втором – состояние меняется сразу у целой группы нейронов, как правило, у всего слоя. Алгоритмически ход времени в нейросети задается итерационным выполнением однотипных действий над нейронами. Далее будут рассматриваться только синхронные нейронные сети.

Сети также можно классифицировать по числу слоев. На рисунке 5 представлен двухслойный перцептрон, полученный из перцептрона с рисунка 3 путем добавления второго слоя, состоящего из двух нейронов. Здесь уместно отметить важную роль нелинейности активационной функции, так как, если бы она не обладала данным свойством или не входила в алгоритм работы каждого нейрона, результат функционирования любой p-слойной нейросети с весовыми матрицами W(i), i=1,2,...p для каждого слоя i сводился бы к перемножению входного вектора сигналов X на матрицу

W()=W(1)W(2) ...W(p) (7)

то есть фактически такая p-слойная нейросеть эквивалентна однослойной сети с весовой матрицей единственного слоя W():

Y=XW() (8)

Продолжая разговор о нелинейности, можно отметить, что она иногда вводится и в синаптические связи. Большинство известных на сегодняшний день сетей используют для нахождения взвешенной суммы входов нейрона формулу (1), однако в некоторых приложениях полезно ввести другую запись, например:

(9)

или даже

(10)

Вопрос в том, чтобы разработчик нейросети четко понимал, для чего он это делает, какими ценными свойствами он тем самым дополнительно наделяет нейрон, и каких лишает. Введение такого рода нелинейности, вообще говоря, увеличивает вычислительную мощь сети, то есть позволяет из меньшего числа нейронов с "нелинейными" синапсами сконструировать нейронную сеть, выполняющую работу обычной сети с большим числом стандартных нейронов и более сложной конфигурации[1].

Многообразие существующих структур сетей позволяет отыскать и другие критерии для их классификации, но они выходят за рамки данной работы.

Теперь рассмотрим один нюанс, преднамеренно опущенный ранее. Из рисунка функции единичного скачка видно, что пороговое значение T, в общем случае, может принимать произвольное значение. Более того, оно должно принимать некое произвольное, неизвестное заранее значение, которое подбирается на стадии обучения вместе с весовыми коэффициентами. То же самое относится и к центральной точке сигмоидной зависимости, которая может сдвигаться вправо или влево по оси X, а также и ко всем другим активационным функциям. Это, однако, не отражено в формуле (1), которая должна была бы выглядеть так:

(11)

Дело в том, что такое смещение обычно вводится путем добавления к слою нейронов еще одного входа, возбуждающего дополнительный синапс каждого из нейронов, значение которого всегда равняется 1. Присвоим этому входу номер 0. Тогда

, (12)

где w0 = –T, x0 = 1.

Очевидно, что различие формул (1) и (12) состоит лишь в способе нумерации входов.

Из всех активационных функций, изображенных на рисунке 3, одна выделяется особо. Это гиперболический тангенс, зависимость которого симметрична относительно оси X и лежит в диапазоне [-1,1]. Выбор области возможных значений выходов нейронов во многом зависит от конкретного типа сети и является вопросом реализации, так как манипуляции с ней влияют на различные показатели эффективности сети, зачастую не изменяя общую логику ее работы.

Обучение искусственных нейронных сетей

Обучить нейронную сеть - значит, сообщить ей, чего мы от нее добиваемся. Этот процесс очень похож на обучение ребенка алфавиту. Показав ребенку изображение буквы "А", мы спрашиваем его: "Какая это буква?" Если ответ неверен, мы сообщаем ребенку тот ответ, который мы хотели бы от него получить: "Это буква А". Ребенок запоминает этот пример вместе с верным ответом, то есть в его памяти происходят некоторые изменения в нужном направлении. Мы будем повторять процесс предъявления букв снова и снова до тех пор, когда все 33 буквы будут твердо запомнены. Такой процесс называют "обучение с учителем".

При обучении нейронной сети мы действуем совершенно аналогично. У нас имеется некоторая база данных, содержащая примеры (набор рукописных изображений букв). Предъявляя изображение буквы "А" на вход нейронной сети, мы получаем от нее некоторый ответ, не обязательно верный. Нам известен и верный (желаемый) ответ - в данном случае нам хотелось бы, чтобы на выходе нейронной сети с меткой "А" уровень сигнала был максимален. Обычно в качестве желаемого выхода в задаче классификации берут набор (1, 0, 0, ...), где 1 стоит на выходе с меткой "А", а 0 - на всех остальных выходах. Вычисляя разность между желаемым ответом и реальным ответом сети, мы получаем 33 числа - вектор ошибки. Алгоритм обратного распространения ошибки - это набор формул, который позволяет по вектору ошибки вычислить требуемые поправки для весов нейронной сети. Одну и ту же букву (а также различные изображения одной и той же буквы) мы можем предъявлять нейронной сети много раз. В этом смысле обучение скорее напоминает повторение упражнений в спорте - тренировку.

Оказывается, что после многократного предъявления примеров веса нейронной сети стабилизируются, причем нейронная сеть дает правильные ответы на все (или почти все) примеры из базы данных. В таком случае говорят, что "нейронная сеть выучила все примеры", "нейронная сеть обучена", или "нейронная сеть натренирована". В программных реализациях можно видеть, что в процессе обучения величина ошибки (сумма квадратов ошибок по всем выходам) постепенно уменьшается. Когда величина ошибки достигает нуля или приемлемого малого уровня, тренировку останавливают, а полученную нейронную сеть считают натренированной и готовой к применению на новых данных.

Важно отметить, что вся информация, которую нейронная сеть имеет о задаче, содержится в наборе примеров. Поэтому качество обучения нейронной сети напрямую зависит от количества примеров в обучающей выборке, а также от того, насколько полно эти примеры описывают данную задачу. Так, например, бессмысленно использовать нейронную сеть для предсказания финансового кризиса, если в обучающей выборке кризисов не представлено. Считается, что для полноценной тренировки нейронной сети требуется хотя бы несколько десятков (а лучше сотен) примеров.

Повторим еще раз, что обучение нейронных сетей - сложный и наукоемкий процесс. Алгоритмы обучения нейронных сетей имеют различные параметры и настройки, для управления которыми требуется понимание их влияния.


Применение нейронных сетей

После того, как нейронная сеть обучена, мы можем применять ее для решения полезных задач. Важнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно, действовать и в тех ситуациях, в которых он не бывал в процессе обучения. Например, мы можем читать почти любой почерк, даже если видим его первый раз в жизни. Так же и нейронная сеть, грамотным образом обученная, может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные. Например, мы можем нарисовать букву "А" другим почерком, а затем предложить нашей нейронной сети классифицировать новое изображение. Веса обученной нейронной сети хранят достаточно много информации о сходстве и различиях букв, поэтому можно рассчитывать на правильный ответ и для нового варианта изображения.


Список литературы

  1. http://www.module.ru/files/un_neuron_net.pdf

  2. http://www.neuroproject.ru/neuro.htm

  3. http://www.orc.ru/~stasson/neurox.html#articles

цикл статей: «нейронные сети: основные положения», C.Короткий

  1. http://mechanoid.narod.ru/nns/base

Основные модели и методы теории искусственных нейронных сетей, Борисов Е. С., 19 октября 2005 г.

* Иногда перцептроном называют любую НС слоистой структуры, однако здесь и далее под перцептроном понимается только сеть, состоящая из нейронов с активационными функциями единичного скачка (бинарная сеть).

Характеристики

Тип файла
Документ
Размер
838,53 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6447
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее