85922 (612608), страница 2

Файл №612608 85922 (Подготовка к Единому государственному экзамену по математике через элективные курсы) 2 страница85922 (612608) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Опыт ряда регионов, участвующих в эксперименте по профильному обучению, показывает, что в институтах повышения квалификации, педагогических вузах, в школах на местах создаются собственные варианты элективных курсов. Многие из них представляют интерес и заслуживают поддержки. В этой связи можно рекомендовать региональным и муниципальным органам управления образованием создавать банки данных по элективным курсам, организовать информационную поддержку и обмен опытом введения элективных курсов.

Общеобразовательное учреждение принимает решение и несет ответственность за содержание и проведение элективных курсов в порядке, определенном учредителем.

Создание элективных курсов – важнейшая часть обеспечения введения профильного обучения. Поэтому их разработка и внедрение должны стать частью Региональных программ перехода к профильному обучению.

Опыт создания и внедрения элективных курсов, вопросы учебно-методического обеспечения элективов будет широко освещаться в педагогической печати, прежде всего, в учрежденном Минобразованием России и Российской академией образования, журнале «Профильная школа».

2.1 Структура программы элективного курса.

Программа элективных курсов для средней (полной) школы имеет следующую структуру:

  1. Титульный лист.

  2. Пояснительная записка.

  3. Учебно-тематический план.

  4. Содержание изучаемого курса.

  5. Методические рекомендации.

  6. Литература.

Рассмотрим требования к каждому из элементов программы элективного курса.

Титульный лист включает:

- наименование образовательного учреждения;

- сведения о том, где, когда и кем утверждена программа;

- название элективного курса;

- класс, на который рассчитана программа;

- ФИО, должность автора (авторов) программы;

- название города, населенного пункта;

- год разработки программы.

Пояснительная записка включает:

- обоснование необходимости введения данного курса в школе;

- указание на место и роль курса в профильном обучении. Важно показать, каково место курса в соотношении как с общеобразовательными, так и с базовыми профильными предметами: какие межпредметные связи реализуются при изучении курса, какие общеучебные и профильные умения и навыки при этом развиваются, каким образом создаются условия для активизации познавательного интереса учащихся, профессионального самоопределения, как введение курса в учебный план конкретней школы поможет выявить и решить проблемы школьного сообщества (развитие школьного самоуправления; организация досуга учащихся; усиление взаимодействия семьи и школы, а также и местной администрации, общественности; учет регионального компонента; улучшение имиджа и повышение конкурентноспособности школы);

- цель и задачи элективного курса. Желательно сформулировать в терминах, понятных потребителю – учителю и учащимся. Цель курса – для чего он изучается, какие потребности субъектов образовательного процесса удовлетворяет? Желательно продумать цели всех субъектов образовательного процесса: учащихся, учителей, школьного сообщества, общества в целом.

В соответствии с целями формируются задачи изучения курса – что необходимо для достижения целей? Над чем конкретно предстоит работать учителю и учащимся при изучении курса?

- сроки реализации программы (продолжительность обучения, этапы);

- основные принципы отбора и структурирования материала;

- методы, формы обучения, режим занятий. Ведущее место в обучении следует отвести методам поискового и исследовательского характера, стимулирующим познавательную активность учащихся. Значительной должна быть доля самостоятельной работы с различными источниками учебной информации;

Формы обучения могут быть коллективные, так и индивидуально-групповые.

- предполагаемые результаты. Ожидаемый результат изучения курса – это ответ на вопрос: какие знания, умения, опыт, необходимые для построения индивидуальной образовательной траектории в школе и успешной профессиональной карьеры по ее окончании будут получены, какие виды деятельности будут освоены, какие ценности будут предложены для усвоения?

Результаты обучения могут быть сформированы как в терминах «учащийся должен знать (иметь представление, приводить примеры), уметь, иметь опыт», так и в терминах компетентностей. В последнем случае, в соответствии с тремя основными видами учебных компетентностей – работа в группе, работа с информацией, решение проблем – можно описать уровень достижений учащихся в каждой из указанных областей деятельности по окончании изучаемого курса;

- инструментарий для оценивания результатов.

Учебно-тематический план включает:

- перечень разделов, тем;

- количество часов на изучение каждой темы;

- вид занятий (лекция, практические, лабораторные работы, семинар, экскурсии, учебные проекты и т.д.)

и оформляется в виде таблицы:

Наименование тем курса

Всего часов

В том числе

Форма контроля

Лекц.

Практ.

Семин.

Содержание изучаемого курса включает перечень тем и их реферативное описание. При составлении программы необходимо учитывать сложившиеся в педагогической практике подходы к построению содержания, в том числе:

- каждая тема программы должна быть ориентирована на получение запланированного общего результата обучения. Для этого должен быть определен основной (ведущий) компонент (система научных знаний, способы и средства конкретного вида деятельности, опыт и технология творчества) и другие (вспомогательные) компоненты, способствующие раскрытию основного содержания;

- каждая тема (этап программы) должна основываться на содержании предыдущих этапов обучения (на достигнутом учащимися общенаучном, общекультурном и практическом уровне подготовки) и составлять базу для последующих этапов;

- программа должна отражать соотношение и взаимосвязь теоретических и практических занятий, составляющих единое целое;

- в программе должна быть предусмотрена возможность внесения в нее изменений, учитывающих региональные, национальные, местные особенности социально-экономической обстановки и сложившихся культурно-исторических традиций и характера деятельности;

- каждая тема и программа в целом должна выводить учащихся по их выбору на конкретную профессию из нескольких родственных профессий. Программа профильного обучения должна составлять базу для профессиональной последующей подготовки – начальной, средней и высшей.

Условия осуществления программы обучения призваны определить характер среды обучения и ее элементы, необходимые для достижения поставленных целей. Они позволяют учителю более качественно подготовиться к реализации программы и достигнуть результатов обучения в полном объеме.

Методические рекомендации должны способствовать качественной подготовке и проведению занятий учителем и учащимися и включают:

- основные содержательные компоненты по каждому разделу или теме;

- описание приемов и средств организации учебно-воспитательного процесса;

- описание форм проведения занятий;

- дидактические материалы.

Литература включает список литературы, а также других видов учебно-методических материалов и пособий, необходимых для изучения курса.

2.2. Экспертиза программ элективных курсов школьного компонента.

В информационном письме об элективных курсах в системе профильного обучения на старшей ступени общего образования, направленного в органы управления образованием субъектов Российской Федерации говориться, что «Создание элективных курсов – важнейшая часть обеспечения введения профильного обучения. Поэтому их разработка и внедрение должны стать частью Региональных программ перехода к профильному обучению».

Требования к программам:

1. Степень новизны для учащихся. Программа включает материал, не содержащийся в базовых программах.

2. Мотивирующий потенциал программы. Программа содержит знания, вызывающие познавательный интерес учащихся.

3. Развивающий потенциал программы. Содержание программы способствует интеллектуальному, творческому, эмоциональному развитию школьников.

4. Здоровьесберегающие характеристики. Программа не создает учебных нагрузок для школьников (отсутствие или необязательность домашних заданий), предполагает широкое использование активных методов обучения.

5. Полнота содержания. Программа содержит все необходимое для достижения запланированных в ней учебных целей.

6. Связность и систематичность изложенного материала. Содержание построено таким образом, что изучение всех последующих тем обеспечивается предыдущими или знаниями базовых курсов; между частными и общими знаниями прослеживаются связи.

7. Методы обучения. Программа основывается преимущественно на активных методах обучения (проектных, исследовательских, игровых и т.д.).

8. Степень контролируемости. В программе конкретно определены ожидаемые результаты обучения и методы проверки их достижимости.

9. Реалистичность с точки зрения ресурсов. Программа реалистична с точки зрения использования учебно-методических и материально-технических средств, кадровых возможностей школ.

10. Формальная структура программы. Наличие в программе необходимых разделов: пояснительной записки (с обязательным целеполаганием), основного (тематического) содержания, ожидаемых результатов обучения, списка литературы.

Глава 3. Практика применения элективных курсов как эффективный способ подготовки к единому государственному экзамену на примере СОШ №26 г. Якутска.

В качестве программы элективного курса, цель которого – подготовка учащихся к ЕГЭ, учителя математики СОШ №26 г.Якутска используют перечень вопросов содержания (кодификатор) школьного курса математики, усвоение которых проверяется при сдачи единого государственного экзамена 2007г.

Элективный курс по подготовке к Единому Государственному Экзамену основан на повторении, систематизации и углублении знаний полученных ранее. Занятия проходят в форме свободного практического урока и состоят из обобщённой теоретической части и практической части, где им предлагается решить задания схожие с заданиями вошедшими в ЕГЭ прошлых лет или же удовлетворяющие перечни контролируемых вопросов. На курсах также рассматриваются иные, нежели привычные, подходы к решению задач, позволяющие сэкономить время на ЕГЭ.

3.1 Перечень вопросов содержания школьного курса математики, усвоение которых проверяется при сдаче единого государственного экзамена.

Перечень контролируемых вопросов содержания составлен на базе обязательного минимума содержания среднего (полного) и основного общего образования (приложение к приказам Минобразования РФ №1236 от19.05.98 и №56 от 30.06.99.).

Материал минимумов содержания старшей и основной школы сгруппирован по темам, включающим близкие по математике вопросы содержания или общие методы решения. В первом столбце таблицы жирным курсивом выделены крупные блоки содержания, которые разбиты на темы и вопросы содержания. Во втором столбце указываются коды вопросов содержания. Заданию присваивается код именно того вопроса содержания, на проверку которого в первую очередь направленно это задание.

Знаком (*) отмечены вопросы содержания, которые традиционно контролируется на вступительных экзаменах в ВУЗы, но не проверяются на выпускном школьном экзамене. Знаком (**) отмечены вопросы содержания, которые традиционно используются при составлении более сложных заданий, предлагаемых на выпускных экзаменах в 11-ом классе, а также на вступительных экзаменах в ВУЗы. Материал, отмеченный знаками * и **, используется только при составлении заданий повышенного и высокого уровня, которые включаются в Части 2 и 3 экзаменационной работы.

Код блока (темы, вопроса) содержания, контролируемого при сдаче ЕГЭ

Содержание, контролируемое при сдаче ЕГЭ

1

Выражения и преобразования

1.1

Корень степени n

1.1.1

Понятия корня степени n

1.1.2

Свойства корня степени n

1.1.2.1

Корень из произведения и произведение корней: упрощать выражение, находить значение выражения

1.1.2.2

Корень из частного и частное корней: упрощать выражение, находить значение выражения

1.1.2.3

Корень из степени и степень корня: упрощать выражение, находить значение выражения

1.1.2.4

Корень степени m из корня степени n: упрощать выражение, находить значение выражения

1.1.2.5

Корень из произведения и частного степеней: упрощать выражение, находить значение выражения

1.1.2.6

Корень из произведения и частного корней: упрощать выражение, находить значение выражения

1.1.2.7

Другие комбинации свойств корней степени n: упрощать выражение, находить значение выражения

1.1.3

Тождественные преобразования иррациональных выражений: упрощать выражение, находить значение выражения

1.2

Степень с рациональным показателем

1.2.1

Понятие степени с рациональным показателем

1.2.2

Свойства степени с рациональным показателем

1.2.2.1

Произведение степеней с одинаковыми основаниями: упрощать выражение, находить значение выражения

1.2.2.2

Частное степеней с одинаковыми основаниями: упрощать выражение, находить значение выражения

1.2.2.3

Степень степени: упрощать выражение, находить значение выражения

1.2.2.4

Степень произведения и частного: упрощать выражение, находить значение выражения

1.2.2.5

Сравнение степеней с различными основаниями: находить наибольшее (наименьшее), расположить в порядке возрастания (убывания)

1.2.2.6

Сравнение различных степеней с одинаковыми основаниями: находить наибольшее (наименьшее), расположить в порядке возрастания (убывания)

1.2.2.7

Произведение и частное степеней с одинаковыми основаниями: находить наибольшее (наименьшее), расположить в порядке возрастания (убывания)

1.2.2.8

Другие комбинации свойств степеней: упрощать выражение, находить значение выражения

1.2.3

Тождественные преобразования степенных выражений

1.3

Логарифм

1.3.1

Понятие логарифма

1.3.2

Свойства логарифмов

1.3.2.1

Логарифм произведения и сумма логарифмов: упрощать выражение, находить значение выражения

1.3.2.2

Логарифм частного и разносит логарифмов: упрощать выражение, находить значение выражения

1.3.2.3

Логарифм степени и произведение числа и логарифма: упрощать выражение, находить значение выражения

1.3.2.4

Формула перехода от одного основания логарифма к другому: упрощать выражение, находить значение выражения

1.3.2.5

Логарифм произведения и частного степеней, сумма и разность логарифмов с одинаковыми основаниями: упрощать выражение, находить значение выражения

1.3.2.6

Сумма и разность логарифмов с различными основаниями: упрощать выражение, находить значение выражения

1.3.2.7

Основное логарифмическое тождество: упрощать выражение, находить значение выражения

1.3.2.8

Другие комбинации свойств логарифмов: упрощать выражение, находить значение выражения

1.3.3

десятичные и натуральные логарифмы: упрощать выражение, находить значение выражения

1.3.4

Тождественные преобразования логарифмических выражений:

1.4

Синус, косинус, тангенс, котангенс

1.4.1

Понятие синуса, косинуса, тангенса, котангенса числового аргумента

1.4.2

Соотношения между тригонометрическими функциями одного аргумента

1.4.2.1

Основное тригонометрическое тождество: упрощать выражение, находить значение выражения

1.4.2.2

Произведение тангенса и котангенса одного и того же аргумента: упрощать выражение, находить значение выражения

1.4.2.3

Зависимость между тангенсом и косинусом одного и того же аргумента: упрощать выражение, находить значение выражения

1.4.2.4

Зависимость между котангенсом и синусом одного и того же аргумента: упрощать выражение, находить значение выражения

1.4.2.5

Другие комбинации соотношений между тригонометрическими функциями одного и того же аргумента: упрощать выражение, находить значение выражения

1.4.3

Формулы сложения

1.4.3.1

Синус суммы и разности: упрощать выражение, находить значение выражения

1.4.3.2

Косинус суммы и разности: упрощать выражение, находить значение выражения

1.4.3.3

Тангенс суммы и разности: упрощать выражение, находить значение выражения

1.4.4

Следствие из формул сложения

1.4.4.1

Синус двойного угла: упрощать выражение, находить значение выражения

1.4.4.2

Косинус двойного угла: упрощать выражение, находить значение выражения

1.4.4.3

Тангенс двойного угла: упрощать выражение, находить значение выражения

1.4.5

Формулы приведения: упрощать выражение, находить значение выражения

1.4.6

Тождественные преобразования тригонометрических преобразований: упрощать выражение, находить значение выражения

1.5

Прогрессии

1.5.1

Арифметическая прогрессия

1.5.1.1*

Формулы общего члена и суммы n первых членов арифметической прогрессии: решать задачи с применением формул

1.5.1.2*

Текстовые задачи с практическим содержанием на использование арифметической прогрессии: решать задачи с применением формул

1.5.2

Геометрическая прогрессия

1.5.2.1

Формулы общего члена и суммы n первых членов геометрической прогрессии: решать задачи с применением формул

1.5.2.2

Текстовые задачи с практическим содержанием на использование геометрической прогрессии: решать задачи с применением формул

2

Уравнения и неравенства

2.1

Уравнения с одной переменной

2.2

Равносильность уравнений: распознавать равносильные уравнения

2.3

Общие приёмы решения уравнений

2.3.1

Разложение на множители:

2.3.1.1

Иррациональные уравнения: решать; решать и отбирать корни по заданному условию

2.3.1.2

Тригонометрические уравнения: решать и отбирать корни по заданному условию

2.3.1.3

Показательные уравнения: решать и отбирать корни по заданному условию

2.3.1.4

Логарифмические уравнения: решать и отбирать корни по заданному условию

2.3.2

Замена переменной:

2.3.2.1

Иррациональные уравнения: решать; решать и отбирать корни по заданному условию

2.3.2.2

Тригонометрические уравнения: решать и отбирать корни по заданному условию

2.3.2.3

Показательные уравнения: решать и отбирать корни по заданному условию

2.3.2.4

Логарифмические уравнения: решать и отбирать корни по заданному условию

2.3.3

Использование свойств функций:

2.3.3.1

Иррациональные уравнения: решать; решать и отбирать корни по заданному условию

2.3.3.2

Тригонометрические уравнения: решать и отбирать корни по заданному условию

2.3.3.3

Показательные уравнения: решать и отбирать корни по заданному условию

2.3.3.4

Логарифмические уравнения: решать и отбирать корни по заданному условию

2.3.4

Использование графиков:

2.3.4.1

Иррациональные уравнения: решать; решать и отбирать корни по заданному условию

2.3.4.2

Тригонометрические уравнения: решать и отбирать корни по заданному условию

2.3.4.3

Показательные уравнения: решать и отбирать корни по заданному условию

2.3.4.4

Логарифмические уравнения: решать и отбирать корни по заданному условию

2.4

Решение простейших уравнений

2.4.1

Решение иррациональных, тригонометрических, показательных и логарифмических уравнений

2.4.1.1

Решение иррациональных уравнений: решать; решать и отбирать корни по заданному условию

2.4.1.2

Решение показательных уравнений: решать; решать и отбирать корни по заданному условию

2.4.1.3

Решение логарифмических уравнений: решать; решать и отбирать корни по заданному условию

2.4.1.4

Решение тригонометрических уравнений: общая формула решения уравнений sina=a, cosx=a, tgx=a: решать; решать и отбирать корни по заданному условию

2.4.2

Использование нескольких приёмов при решении уравнений

2.4.2.1**

Использование нескольких приёмов при решении иррациональных уравнений: решать; решать и отбирать корни по заданному условию

2.4.2.2**

Использование нескольких приёмов при решении тригонометрических уравнений: решать; решать и отбирать корни по заданному условию

2.4.2.3**

Использование нескольких приёмов при решении показательных уравнений: решать; решать и отбирать корни по заданному условию

2.4.2.4**

Использование нескольких приёмов при решении логарифмических уравнений: решать; решать и отбирать корни по заданному условию

2.4.3**

Решение комбинированных уравнений (например, показательно-логарифмических, показательно-тригонометрических): решать; решать и отбирать корни по заданному условию

2.4.4**

Уравнения, содержащие переменную под знаком модуля: решать и отбирать корни по заданному условию

2.4.5**

Уравнения с параметрами: решать; решать и отбирать корни по заданному условию

2.5

Системы уравнений с двумя переменными

2.5.1

Системы, содержащие одно или два иррациональных уравнения: решать, находить решения по заданному условию

2.5.2

Системы, содержащие одно или два тригонометрических уравнения: решать, находить решения по заданному условию

2.5.3

Системы, содержащие одно или два показательных уравнения: решать, находить решения по заданному условию

2.5.4

Системы, содержащие одно или два логарифмических уравнения: решать, находить решения по заданному условию

2.5.5

Использование графиков при решении систем: решать, находить решения по заданному условию

2.5.6**

Системы, содержащие уравнения разного вида (иррациональные, тригонометрические, показательные, логарифмические): решать, находить решения по заданному условию

2.5.7**

Системы уравнений с параметром: решать, находить решения по заданному условию

2.5.8**

Системы, содержащие одно или два рациональных уравнения: решать, находить решения по заданному условию

2.6

Неравенства с одной переменной

2.6.1

Рациональные неравенства: решать, находить решения по заданному условию

2.6.2

Показательные неравенства: решать, находить решения по заданному условию

2.6.3

Логарифмические неравенства: решать, находить решения по заданному условию

2.6.4

Использование графиков пи решении неравенства: решать, находить решения по заданному условию

2.6.5**

Неравенства, содержащие переменную под знаком модуля: решать, находить решения по заданному условию

2.6.6**

Неравенства с параметром: решать, находить решения по заданному условию

2.6.7

Решение комбинированных неравенств: решать, находить решения по заданному условию

2.7**

Системы неравенств

2.8**

Совокупность неравенств

3

Функции

3.1

Числовые функции и их свойства

3.1.1

Область определения функции:

3.1.11

Тригонометрической: находить по формуле

3.1.1.2

Показательной: находить по формуле

3.1.1.3

Логарифмической: находить по формуле

3.1.1.4

Корня чётной степени: находить по формуле

3.1.2

Множество значений функции:

3.1.2.1

Тригонометрической: находить по формуле

3.1.2.2

Показательной: находить по формуле

3.1.2.3

Логарифмической: находить по формуле

3.1.2.4

Рациональной: находить по формуле

3.1.3

Непрерывность функции:

3.1.4

Периодичность функции:

3.1.4.1

Синуса: находить наименьший положительный период

3.1.4.2

косинуса: находить наименьший положительный период

3.1.4.3

тангенса: находить наименьший положительный период

3.1.4.4

котангенса: находить наименьший положительный период

3.1.5

Чётность (нечётность) функции: распознавать, использовать свойства при решении задач

3.1.6

Возрастание (убывание) функции:

3.1.6.1

Тригонометрической: распознавать возрастающую (убывающую) функцию, находить промежутки возрастания (убывания) функции

3.1.6.2

Показательной: распознавать возрастающую (убывающую) функцию, находить промежутки возрастания (убывания) функции

3.1.6.3

Логарифмической: распознавать возрастающую (убывающую) функцию, находить промежутки возрастания (убывания) функции

3.1.7

Экстремумы функции

3.1.8

Наибольшее (наименьшее) значение функции:

3.1.8.1

Тригонометрической: находить аналитически

3.1.8.2

Показательной: находить аналитически

3.1.8.3

Логарифмической: находить аналитически

3.1.9

Ограниченность функции:

3.1.9.1

Тригонометрической: устанавливать аналитически

3.1.9.2

Показательной: устанавливать аналитически

3.1.9.3

Логарифмической: устанавливать аналитически

3.1.10

Сохранение знака функции:

3.1.10.1

Тригонометрической: находить промежутки знакопостоянства

3.1.10.2

Показательной: находить промежутки знакопостоянства

3.1.10.3

Логарифмической: находить промежутки знакопостоянства

3.1.11

Связь между свойствами функции и её графиком

3.1.11.1

Область определения функции: определять по графику

3.1.11.2

Множество значений функции: определять по графику

3.1.11.3

Непрерывность функции: определять по графику

3.1.11.4

Периодичность функции: определять по графику

3.1.11.5

Чётность (нечётность) функции: определять по графику

3.1.11.6

Возрастание (убывание) функции: определять по графику

3.1.11.7

Наибольшее (наименьшее) значение функции: определять по графику

3.1.11.8

Ограниченность функции: определять по графику

3.1.11.9

Экстремумы функции: определять по графику

4

Числа и вычисления

4.1

Проценты

4.1.1*

Основные задачи на проценты: находить процент числа, число по его проценту, процентное соотношение

4.2

Пропорции

4.2.1*

Основное свойство пропорции: применять при решении задач

4.2.2*

Прямо пропорциональные величины: решать задачи

4.2.3*

Обратно пропорциональные величины: решать задачи

4.3

Решение текстовых задач

4.3.1*

Задачи на движение

4.3.2*

Задачи на работу

4.3.3*

Задачи на сложные проценты

4.3.4*

Задачи на десятичную запись числа

4.3.5*

Задачи на концентрацию смеси и сплавы

5

Геометрические фигуры и их свойства.

Измерение геометрических величин

5.1*

Признаки равенства треугольников. Решение треугольников (Сумма углов треугольника. Неравенство треугольника. Теорема Пифагора. Теорема синусов и теорема косинусов). Площадь треугольника. Применять указанные элементы содержания при решении задач

5.2

Многоугольники. Применять указанные элементы содержания при решении задач

5.2.1*

Параллелограмм, его виды. Площадь параллелограмма

5.2.2*

Трапеция. Средняя линия трапеции. Площадь трапеции

5.2.3*

Правильные многоугольники

5.3

Окружность. Применять указанные элементы содержания при решении задач

5.3.1*

Касательная к окружности и её свойства. Центральный и вписанный углы. Длина окружности. Площадь круга

5.3.2*

Окружность, описанная около треугольника

5.3.3*

Окружность, вписанная в треугольник

5.3.4*

Комбинация окружностей, описанной и вписанной в треугольник

5.4*

Равные векторы. Координаты вектора. Сложение векторов. Умножение вектора на число. Угол между векторами. Скалярное произведение векторов. Применять указанные элементы содержания при решении задач

5.5

Многогранники. Проводить доказанные рассуждения и вычислять значения геометрических величин

5.5.1

Призма

5.5.1.1*

Сечение призмы плоскостью. Площадь боковой и полной призмы. Объём призмы

5.5.1.2*5.5.1.3*

Угол между примой и плоскостью

5.5.1.4**

Угол между плоскостями

5.5.1.5**

Угол между скрещивающимися прямыми

5.5.1.6*

Расстояние отточки до прямой

5.5.1.7*

Расстояние от точки до плоскости

5.5.1

Пирамида

5.5.1.1*

Сечение пирамиды плоскостью. Усечённая пирамида. Площадь боковой и полной поверхностей пирамиды. Объём пирамиды

5.5.1.2*

Угол между прямой и плоскостью

5.5.1.3*

Угол между плоскостями

5.5.1.4**

Угол между скрещивающимися прямыми

5.5.1.5**

Расстояние между скрещивающимися прямыми

5.5.1.6*

Расстояние от точки до прямой

5.5.1.7*

Расстояние от точки до плоскости

5.5.3*

Правильные многогранники. Сечение плоскостью. Площадь боковой и полной поверхности. Объём

5.6

Тела вращения. Проводить доказанные рассуждения и вычислять значения геометрических величин

5.6.1

Прямой круговой цилиндр

5.6.1.1*

Сечение цилиндра плоскостью. Площадь боковой и полной поверхностей цилиндра. Объём цилиндра

5.6.1.2*

Угол между прямой и плоскостью

5.6.1.3*

Угол между плоскостями

5.6.1.4**

Угол между скрещивающимися прямыми

5.6.1.5**

Расстояние между скрещивающимися прямыми

5.6.1.6*

Расстояние от точки до прямой

5.6.1.7*

Расстояние от точки до плоскости

5.6.2

Прямой круговой конус

5.6.2.1*

Сечение плоскостью. Усечённый конус. Площадь боковой и полной поверхностей конуса

5.6.2.2*

Угол между прямой и плоскостью

5.6.2.3*

Угол между плоскостями

5.6.2.4**

Угол между скрещивающимися прямыми

5.6.2.5**

Расстояние между скрещивающимися прямыми

5.6.2.6*

Расстояние от точки до прямой

5.6.2.7*

Расстояние от точки до плоскости

5.6.3

Шар и сфера. Площадь поверхности. Объём шара

5.7**

Комбинации тел. Проводить доказательные рассуждения и вычислять значения геометрических величин

5.7.1**

Комбинации многогранников

5.7.2**

Комбинации тел вращения

5.7.1**

Комбинации многогранников и тел вращения

3.2 Программа элективного курса: «Решение текстовых задач повышенной сложности».

Характеристики

Тип файла
Документ
Размер
595,64 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее