85896 (612601), страница 3

Файл №612601 85896 (Методы решения алгебраических уравнений) 3 страница85896 (612601) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

1. В процессе исключений левая часть I –го уравнения системы обращается в нуль, а правая часть равна некоторому числу, отличному от нуля. т.е. 0 2+ =bc 0.

Это означает, что система не имеет решений, так как I – му уравнению не могут удовлетворять никакие значения неизвестных;

2. Левая и правая части I – го уравнения обращаются в нуль. Это означает, что I – ое уравнение является линейной комбинацией остальных, ему удовлетворяет любое найденное решение системы, поэтому оно может быть отброшено. В системе количество неизвестных больше количества уравнений и, следовательно, такая система имеет множество решений;

3. После того как все уравнения использованы для исключения неизвестных получено решение системы.

Таким образом, конечной целью преобразований Жордана-Гаусса является получение из заданной линейной системы

a11x1 + a12x2 + … + a1nxn = b1,n+1

a21x1 + a22x2 + … + a2nxn = b2,n+1

am1x1 + am2x2 + … + amnxn = bm.n+1

Здесь x1, x2, …, xn — неизвестные, которые надо определить. a11, a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно.

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все ее уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у нее нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2).

Совместная система вида (1) называется определенной, если она имеет единственное решение; если же у нее есть хотя бы два различных решения, то она называется неопределенной. Если уравнений больше, чем неизвестных, она называется переопределённой.

Решим следующую систему уравнений:

Запишем её в виде матрицы 3×4, где последний столбец является свободным членом:

Проведём следующие действия:

  • К строке 2 добавим: -4 * Строку 1.

  • К строке 3 добавим: -9 * Строку 1.

Получим:

  • К строке 3 добавим: -3 * Строку 2.

  • Строку 2 делим на -2

  • К строке 1 добавим: -1 * Строку 3.

  • К строке 2 добавим: -3/2 * Строку 3.

  • К строке 1 добавим: -1 * Строку 2.

В правом столбце получаем решение:

.

3. Математическая обработка результатов опыта. Аппроксимация функций. Полином Лагранжа. Метод наименьших квадратов

В вычислительной математике нередки случаи, когда одну функцию приходится заменять другой, более простой и удобной для дальнейшей работы. Такую задачу называют аппроксимацией функций.

Поводом для аппроксимации функции может послужить, в частности, табличный способ её задания. Предположим, что в результате некоторого эксперимента для конечного набора значений xi величины x из отрезка [a,b].

a=x0 < x1 <…xi… < xn= b

получен набор значений yi величины y (табл. 4.1). Если допустить, что между x и y существует функциональная зависимость y = F(x), можно поставить вопрос о поиске аналитического представления функции F (очевидно, что в такой общей постановке эта задача решается неоднозначно). Точки x0, x1,… xn в этом случае называются узлами. Если расстояние h=xi+1- x1 является постоянным (т.е. независящим от i ), то сетка значений, представленная табл. 4.1, называется равномерной.

Таблица 4.1

x

x0

x1

x2

x1

xn

F(x)

Y0

Y1

Y2

Y1

yn

Повод для аппроксимации может возникнуть даже тогда, когда аналитическое выражение для некоторой функции y = F(x) имеется. однако оно оказывается мало пригодным для решения поставленной задачи, потому что операция, которую требуется осуществить над этой функцией, трудновыполнима. Элементарный пример - вычисление значения трансцендентной функции «вручную». Действительно, чтобы вычислить , например, In 3,2756, проще всего воспользоваться степенным разложением функции, т.е. заменить трансцендентную функцию степенной. При этом получится, разумеется, приближенное значение функции, но если мы умеем контролировать погрешность, то можно считать, что мы получили интересующий нас результат – хотя бы потому, что в реальности все равно приходится ограничиваться приближенным представлением значений логарифмической функции.

Другая ситуация, когда может потребоваться аппроксимация аналитически заданной функции, - вычисление определённых интегралов. Задача эта, как правило, весьма сложная, часто элементарными приемами невыполнимая. Как вычислить интеграл Он, несомненно, существует, но по Формуле Ньютона – Лейбница вычислен быть практически не может, так как первообразная не выражается в элементарных функциях (как и множество других первообразных от элементарных функций). Аппроксимация подынтегральной функции - один из возможных приемов (и важно отметить, что цель аппроксимации налагает отпечаток на ее способ).

Классический подход к численному решению подобных задач заключается в том, чтобы, опираясь на информацию о функции F, по некоторому алгоритму подобрать аппроксимирующую функцию G, в определенном смысле «близкую» к F.

Чаще всего задача аппроксимации решается с помощью многочленов. Вычисления значений многочлена легко автоматизировать, производная и интеграл от многочлена, в свою очередь, также являются многочленами. Наряду с многочленами для аппроксимации используют ряды Фурье, экспоненциальные и другие элементарные функции.

Для оценки «близости» функций выбирают тот или иной критерий согласия. Эти критерии основаны на использовании той или иной метрики, т.е. способа введения расстояния между функциями, принадлежащими тому или иному классу:

(см. гл. 2).

Например, для функций, ограниченных на отрезке [a,b] расстояние может быть введено следующим образом:

(F(x),G(x))= ;

для функций, непрерывных на отрезке [a,b], по формуле

2dx

(а также многими другими способами).

Для функций, заданных таблично, достаточно распространенным критерием согласия является критерий Чебышева, который определяет расстояние между аппроксимируемой и аппроксимирующей функциями как максимум величины отклонения между функциями в узлах сетки (см. табл. 4.1):

(4.1)

Если =0, т.е. F(xi)=G(xi)=yi, то соответствующий способ аппроксимации называют интерполяцией, а процедуру вычисления значений F(x) с помощью G(x) в точках, не являющихся узлами сетки, - интерполированием.

С геометрической точки зрения график функции G(x) при интерполировании должен проходить через все точки A0(x0,y0), A1(x1,y1),…, An(xn,yn). Подчеркнем, что для значений x, не являющихся узловыми, значения функции G(x) ничем не регламентированы, и в принципе могут значительно отличаться от значений функций F(x)).

Часто процедура аппроксимации связана с другим критерием согласия:

(4.2)

Применяемый на его основе способ аппроксимации получил название метода наименьших квадратов.

Выбор критерия согласия позволяет строить методы, позволяющие однозначно определять параметры аппроксимирующей функции (если задан ее вид).

Полином Лагранжа.

Пусть Функция F(x) задана табл. 4.1. Построим многочлен Ln (x), степень которого не выше, чем n, и для которого выполнены условия интерполяции

Ln(x0)=y0, Ln(x1)=y1,…, Ln(xn)=yn. (4.6)

Будем искать Ln (x) в виде

Ln (x),=l0(x)+l1(x)+…+ln(x), (4.7)

где l1(x) – многочлен степени n, причем

l1(xл)= (4.8)

Очевидно, что требование (4.8) с учетом (4.7) вполне обеспечивает выполнение условий (4.6).

Многочлены l1(x)составим следующим образом:

l1(x)=Сi(x - x0)(x - x1) (xi - xi-1)(xi – xi=1) (xi – xn) (4.9)

где Ci – коэффициент, значение которого найдем из первой части условия (4.8):

Сi =

(заметим, что ни один множитель в знаменателе не равен нулю). Подставим Ci в (4.9) и далее с учетом (4.7) окончательно имеем:

Ln (x)= (4.10)

Это и есть интерполяционный многочлен Лагранжа. По таблице исходной функции F формула (4.10) позволяет довольно просто составить «внешний вид» многочлена.

Метод наименьших квадратов.

1) На практике часто приходится решать такую задачу. пусть для двух функционально связанных величин x и y известны n пар соответствующих значений (x1,y1),(x2,y2),…,(xn,yn). Требуется в наперед заданной формуле y=f(x, a1, a2,…,am) определить m параметров a1, a2, …,am (m

Считается (исходя из принципов теории вероятностей), что наилучшими являются те значения a1, a2, …,am, которые обращают в минимум сумму

(т.е. сумму квадратов отклонений значений y, вычисленных по формуле, от заданных), поэтому сам способ и получил название способа наименьших квадратов.

Это условие дает систему m уравнений, из которых определяются a1,a2,…,am:

(1)

(f=1,2,…, m).

На практике заданную формулу y=f (xk,a1, a2, …, am) иногда приходится (в ущерб строгости полученного решения) преобразовывать к такому виду, чтобы систему (1) было проще решать (см. ниже подбор параметров в формулах y=Aecx и y=Axq). Частные случаи: а) y=a0xm-1+…+ am(m+1 параметров a0, a1, …, am;; n>m+1).

Система (1) принимает следующий вид:

(2)

Эта система m+1 уравнений с m+1 неизвестными всегда имеет единственное решение, так как ее определитель отличен от нуля.

Для определения коэффициентов системы (2) удобно составить вспомогательную таблицу

В последней строке записывают сумму элементов каждого столбца, которые и являются коэффициентами системы (2).

Систему (2) обычно решают методом Гаусса.

б) y=Aecx.

Для упрощения системы (1) эту формулу, связывающую х и у, предварительно логарифмируют и заменяют формулой

1g y=1g .

Система (1) примет в этом случае следующий вид:

(3)

Вспомогательная таблица имеет вид

.

Из систему (3) определяют с и 1g A.

в) y=Axq.

Эту формулу также предварительно логарифмируют и заменяют следующей:

Система (1) теперь примет вид

(4)

Соответствующим образом изменяется и вспомогательная таблица.

2) Часто бывает необходимо заменить наилучшим образом некоторую заданную функцию у =f(x) на отрезке [a, b] многочленом m-й степени: Применение способа наименьших квадратов в этом случае приводит к отысканию коэффициентов а0, а1, …, аm из условия минимума интеграла

Необходимые условия минимума этого интеграла приводят к системе m+1 уравнений с m+1 неизвестными a0, a1, a2,..., am, из которых определяют все эти коэффициенты:

(5)

4. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера. Метод Рунге – Кутта

1. Метод Эйлера. Дифференциальное уравнение y’=f(x, y) определяет на плоскости так называемое поле направлений, т.е. в каждой точке плоскости, в которой существует функция f(x, y) задает направление интегральной кривой уравнения, проходящей через эту точку. Пусть требуется решить задачу Коши, т.е. найти решение уравнения y’=f(x, y), удовлетворяющее начальному условию y(x0)=y0. Разделим отрезок [x0, X] на n равных частей и положим (X-x0)/n=h (h – шаг изменения аргумента).Допустим, что внутри элементарного промежутка от x0 до x0+h функция y’ сохраняет постоянное значения f(x0,y0,). Тогда где y1 – значения искомой функции, соответствующее значению х1=x0+h. Отсюда получаем Повторяя эту операцию, получим последовательные значения функции:

Таким образом, можно приближенно построить интегральную кривую в виде ломаной с вершинами Mr (xr; yr), где Этот метод называется методом ломаных Эйлера, или просто методом Эйлера.

2. Метод Рунге – Кутта. Пусть функция у определяется дифференциальным уравнением y’=f(x, y) при начальном условии y(x0)=y0. При численном интегрировании такого уравнения методом Рунге – Кутта определяют четыре числа:

Если положить то можно доказать что Схема вычислений имеет вид

Добавка

5. Практический раздел

1.Решение не линейных уравнений.

1. Отделить корни графический и уточнить один из них методом касательных с точностью

x

0

1

2

3

4

5

6

7

Singf(x)

-

-

-

-

-

-

-

+

т.к. то

x1=6,488

x2=6,401

x3=6,39756

x4=6,397567

2. Решение систем линейных алгебраических уравнений.

1. Решить систему методом Жордана – Гаусса

Характеристики

Тип файла
Документ
Размер
2,81 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее