85800 (612579), страница 7

Файл №612579 85800 (Регрессионный анализ) 7 страница85800 (612579) страница 72016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

3. Практическая часть

- уравнение регрессии.

x

1

2

3

4

5

6

7

8

9

10

y

1.35

1.09

6.46

3.15

5.80

7.2

8.07

8.12

8.97

10.66

Приведем квадратное уравнение к линейной форме:

;

Запишем матрицу X.

Составим матрицу Фишера.

Система нормальных уравнений.

Решим ее методом Гаусса.

Уравнение регрессии имеет вид:

[7]

3.1. Оценка значимости коэффициентов регрессии.

Для проверки нулевой гипотезы используем критерий Стьюдента.


Коэффициенты значимые коэффициенты.[6]

3.2. Проверка адекватности модели по критерию Фишера.

гипотеза о равенстве математического ожидания отвергается. [4]

3.3. Проверка адекватности модели по коэффициенту детерминации или множественной корреляции.

Коэффициент детерминации :

- регрессионная модель адекватна.

Коэффициент множественной корреляции

Рассчитать и построить график уравнения прямолинейной регрессии для относительных значений PWC170 и времени челночного бега 3х10 м у 13 исследуемых и сделать вывод о точности расчета уравнений, если данные выборок таковы:

xi, кГ м/мин/кг ~ 15,6; 13,4; 17,9; 12,8; 10,7; 15,7; 11,7; 12,3; 12,3; 11,1; 14,3; 12,7; 14,4 yi, с ~ 6,9; 7,2; 7,1; 6,7; 7,6; 7,0; 6,4; 6,9; 7,7; 7,6; 7,9; 8,2; 6,8

Решение

1. Занести данные тестирования в рабочую таблицу и сделать соответствующие расчеты.

xi

xi -

(xi - )2

yi

yi –

(yi – )2

(xi - )(yi – )

15.6

2.1

4.41

6.9

-0.3

0.09

-0.63

13.4

-0.1

0.01

7.2

0

0

0

17.9

4.4

19.36

7.1

-0.1

0.01

-0.44

12.8

-0.7

0.49

6.7

-0.5

0.25

0.35

10.7

-2.8

7.84

7.6

0.4

0.16

-1.12

15.7

2.2

4.84

7.0

-0.2

0.04

-0.44

11.7

-1.8

3.24

6.4

-0.8

0.64

1.44

12.3

-1.2

1.44

6.9

-0.3

0.09

0.36

12.3

-1.2

1.44

7.7

0.5

0.25

-0.60

11.1

-2.4

5.76

7.6

0.4

0.16

-0.96

14.3

0.8

0.64

7.9

0.7

0.49

0.56

12.7

-0.8

0.64

8.2

1

1

-0.80

14.4

0.9

0.81

6.8

-0.4

0.16

-0.36

= 13.5

=50,92

= 7,2

=3,34

= -2,64

1. Рассчитать значение нормированного коэффициента корреляции по формуле:

2. Рассчитать конечный вид уравнений прямолинейной регрессии по формулам (2) и (3):

(2)
(3)

Т.е.

4. Рассчитать абсолютные погрешности уравнений регрессии по формулам (4) и (5):

5. Рассчитать относительные погрешности уравнений регрессии по формулам (6) и (7):


6. Для графического представления корреляционной зависимости между признаками рассчитать координаты линий регрессии, подставив в конечный вид уравнений (1) и (2) данные любого исследуемого (например, четвертого из списка).
Тогда:

при х = 12,8 кГм/мин/кг у =7,235 с » 7,2 с;

при у = 6,7 с х = 13,895 с » 13,9 кГм/мин/кг.

7. Представить графически данное уравнение регрессии.

8. На основании произведенных расчетов и графического изображения уравнения регрессии сделать вывод.

Вывод:
1) в исследуемой группе наблюдается недостоверная обратная взаимосвязь между данными относительных значений PWC170 и времени челночного бега 3х10 м, т.к. rху = -0,20 < rst = 0,55 для К= 11 при = 95%;
2) относительная погрешность функции ух = 7,875 – 0,05х меньше (7,22%), а, следовательно, прогноз результата в челночном беге по данным относительных значений пробы PWC170 более точен;
3) на графике линии уравнения регрессии расположены почти под прямым углом, так как значения коэффициента корреляции близки к нулю.[3]

Заключение

В исследуемой группе наблюдается недостоверная обратная взаимосвязь между данными относительных значений PWC170 и времени челночного бега 3х10 м, т.к. rху = -0,20 < rst = 0,55 для К= 11 при = 95%;
- относительная погрешность функции ух = 7,875 – 0,05х меньше (7,22%), а, следовательно, прогноз результата в челночном беге по данным относительных значений пробы PWC170 более точен;
- на графике линии уравнения регрессии расположены почти под прямым углом, так как значения коэффициента корреляции близки к нулю.

Также в работе показана корреляционная зависимость показателей 32 российских банков, проведен регрессионный анализ и нашли регрессионную модель данной взаимосвязи показателей. Задача регрессионного анализа состоит в построении модели, позволяющей по значениям независимых показателей получать оценки значений зависимой переменной. Регрессионный анализ является основным средством исследования зависимостей между социально-экономическими переменными. Эту задачу мы рассмотрим в рамках самой распространенной в статистических пакетах классической модели линейной регрессии. Специфика социологических исследований состоит в том, что очень часто необходимо изучать и предсказывать социальные события. Вторая часть данной главы будет посвящена регрессии, целью которой является построение моделей, предсказывающих вероятности событий. Величина называется ошибкой регрессии. Первые математические результаты, связанные с регрессионным анализом, сделаны в предположении, что регрессионная ошибка распределена нормально с параметрами, ошибка для различных объектов считаются независимыми. Кроме того, в данной модели мы рассматриваем переменные как неслучайные значения. Такое, на практике, получается, когда идет активный эксперимент, в котором задают значения (например, назначили зарплату работнику), а затем измеряют (оценили, какой стала производительность труда).

Полученное уравнение ŷ=245,75+1,42х позволяет проиллюстрировать зависимость размера работающих активов банков от размера их капитала.

И так, с помощью корреляционно-регрессионного анализа, можно исследовать показатели банков.[8]

Использованная литература

  1. Аверкин А.Н., Батыршин И.З., Блишун А.Ф. и др. Нечеткие множества в моделях управления и искусственного интеллекта // Под ред. Д.А. Поспелова. – М.: Наука, 1986. – 312 с.

  2. Аветисян Д.О. Проблемы информационного поиска: (Эффективность, автоматическое кодирование, поисковые стратегии) - М.: Финансы и статистика, 1981. - 207 с.

  3. Айвазян С.А., Бежаева З.И., Староверов О.В. Классификация многомерных наблюдений. – М.: Статистика, 1974. – 240 с.

  4. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Основы моделирования и первичная обработка данных. Справочное издание. – М.: Финансы и статистика, 1983. – 472 с.

  5. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Исследование зависимостей: Справочник. – М.: Финансы и статистика, 1985. – 182с.

  6. Айвазян С.А. , Мхитарян В.С. Прикладная статистика и основы эконометрики. – М. Юнити, 1998. – 1024 с.

  7. Ван дер Варден Б.Л. Математическая статистика. – М.: Изд-во иностр. лит., 1960. – 302 с.

  8. Гайдышев И.П. Анализ и обработка данных: специальный справочник. - СПб.: Питер, 2001. - 752 с.

  9. Гмурман В.С. Теория вероятностей и математическая статистика. – М.: Высш. шк., 1972. – 368 с.

  10. Калинина В.Н., Панкин В.Ф. Математическая статистика. – М.: Высш. шк., 2001. – 336 с.

  11. Кендалл М., Стьюарт А. Теория распределений. – М.: Наука, 1966. – 566 с.

  12. Кендалл М., Стьюарт А. Статистические выводы и связи. – М .: Наука, 1973. – 899 с.

Характеристики

Тип файла
Документ
Размер
2,43 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7031
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее