85708 (612556), страница 2
Текст из файла (страница 2)
(1.10)
(1.11)
при чём i=const, если i=const.
Согласно гипотезе 4°, при стационарном муфельном нагреве проволок количество тепла поглощаемого проволоками А и В за время ∆t на участке рабочей зоны [х; х+∆х], пропорциональны этому времени, боковой поверхности проволок и соответствующим разностям температур:
(1.12)
(1.13)
где
>0 и
0 – условные коэффициенты теплообмена каждой из проволок, соответственно, с муфелем и с соседней проволокой.
При раздельном движении проволок А и В в соседних каналах теплообмен между ними возможен только косвенный, через тело муфеля, чему соответствуют значения
>0 и
= 0. Если же эти проволоки движутся в общем канале, то их косвенный теплообмен будет дополнятся прямым теплообменом, интенсивность которого характеризуется коэффициентом
> 0 и пусть
(1.14)
– параметр, определяющий соотношение интенсивностей прямого и косвенного теплообмена проволок для условий данного термопроцесса.
Интенсивность прямого теплообмена проволок можно регулировать различными известными способами, в частности, изменением расстояния между ними. Возможный диапазон такого регулирования, согласно нашим расчётам можно оценить значением g
[0; l]. В данном исследовании для соответствующих ориентировочных расчётов будет приниматься значение g=0,5.
Исходный процесс термообработки проволок на параллельных курсах с нагревом в газовой среде считаем определённым с полнотой, достаточной для вычисления соответствующего значения коэффициента
. Пусть
– аналогичный коэффициент для иного варианта процесса той же термообработки тех же проволок с той скоростью,
(1.15)
– его относительная величина. Значением
будут моделироваться такие же условия теплообмена проволок и муфеля, которые имеют место при исходном термопроцессе. При заполнении каналов муфеля жидкой рабочей средой интенсивность теплообмена проволок увеличивается, по крайней мере, на порядок. В ориентировочных расчётах такой вариант термопроцесса будем моделировать значением f=10.
И так, в данном исследовании качественные оценки основных показателей различных вариантов обсуждаемых термопроцессов будем моделировать при следующих значениях параметров:
_
(1.16)
(1.17)
Уравнения баланса тепла для рассматриваемых элементов проволок А и В можно получить попарно приравнивая величины (1.3), (1.12) и (1.4), (1.13).
(1.18)
Условия данной термообработки проволок на параллельных курсах выражаются соотношениями:
, (1.19)
(1.20)
а на встречных курсах – соотношениями
(1.21)
(1.22)
Кроме того, общим является условие, что
(1.23)
Таким образом, для нахождения трёх неизвестных функций ТА =ТА(х), TB=TB(x), TC=TC(x) получена система трех уравнений (1.10), (1.18), решения которых, удовлетворяющие соответствующей комбинации условий (1.19) – (1.23), позволяют единообразно описать и оценить показатели кинетики различных вариантов простого отжига, используя в качестве базовых данных известные параметры некоторого исходного процесса данной термообработки. Сравнение показателей кинетики двух вариантов данной термообработки, отличающихся только направленностью движения соседних проволок А и В, позволяет выявить неизвестные особенности режимов термообработки проволок на встречных курсах.
2. Простой отжиг проволок на встречных курсах в муфельном термоаппарате
Этот процесс описывается зависимостями (1.10), (1.11), (1.18), (1.21) – (1.23). Условия его осуществления сохраняем идентичными условиям процесса термообработки проволок на параллельных курсах.
В этом случае в рабочей зоне x
[-L; L] распределения температур ТА =ТА(х), TB=TB(x), TC=TC(x) проволок А, В и муфеля С удовлетворяют соответствующим условиям симметрии:
(2.1)
Эти условия являются необходимыми условиями обеспечения одинаковых режимов термообработки для всех проволок, независимо от направления их движения и названные зависимости удовлетворяют этим условиям. Проволоки А и В с начальной температурой, условно принятой равной нулю, вступают в рабочую зону с противоположных сторон:
(2.2)
Исходя из физического смысла задачи, можно предположить, что свою заданную температуру
они достигают в обогреваемой зоне муфеля
в некоторых точках x = ±h:
(2.3)
Пусть
(2.4)
Итак, каждая из проволок, вступая в термоаппарат с нулевой температурой, его покидает с температурой Т4. Следовательно, удельное количество тепла, поглощаемого проволокой в термоаппарате – удельная энергоёмкость данного процесса равна
, (2.5)
а показатель относительной энергоёмкости
(2.6)
равен
(2.7)
Необходимая для этого энергия поступает из внешнего источника, действующего в зоне
, и следовательно,
(2.8)
В этой зоне средняя скорость нагрева проволок
(2.9)
а плотность внешнего теплового потока здесь постоянна и, согласно (1.11) ровна
(2.10)
В периферийных необогреваемых зонах муфеля
j=0 и i=0.
При названных условиях и соглашениях систему (1.10), (1.18) преобразуем к виду:
(2.11)
где
(2.12)
Если
К<0,5 , (2.13)
то решение системы (2.12), удовлетворяющее всей совокупности названных условий и ограничений, можно выразить следующими зависимостями:
(2.14)
(2.15)
При этом
(2.16)
В зоне обогрева
графиками температур ТА =ТА(х), TB=TB(x), TC=TC(x) и средней температуры проволок
(2.17)
являются одинаковые, обращённые выпуклостью вверх параболы с вершинами, соответственно
где
(2.18)
(2.19)
. (2.20)
3. Сложный отжиг проволок на встречных курсах в муфельном термоаппарате
Рассмотрим отжиг проволок на встречных курсах и рассмотрим уравнения баланса тепла:
(3.1)
Условимся что
(3.2)
Согласно § 2 температура проволок А и В, при постоянной плотности потока
, нарастает по параболическому закону на отрезке [-h, h]. На этом отрезке проволока А достигает своей максимальной температуры (см. рис.)
Y
Т
* A const
T*
F
(t)
B
\
X
Рис. 1
Постановка задачи. Пологая, что допустим любой форсированный режим нагрева с условием изотермичности в окрестности максимальной температуры и что задан строго определённый режим охлаждения в ограниченном интервале температур, разработать алгоритм расчета параметров нагрева проволок при их движении встречными потоками.
Пусть TA(x), TB(x), TС(x) – распределение температур проволок A и B, движущихся навстречу друг другу, и муфеля С. Весь путь термообработки проволок A и B разбит на интервалы: [-h, h], [h,
], [
. Известно, что на интервале [-h, h] при постоянной плотности потока j0 проволоки нагреваются по параболическому закону, на интервале [h,
] проволока A достигает максимальной температуры T* и сохраняет ее на всем интервале. На интервале [
закон распределения температуры проволоки A: TA(x)=F(t)=F(
). Требуется определить законы распределения температур проволоки B, муфеля С и плотности потока j на интервалах [h,
], [
. При этом процесс считаем симметричным.
Так как на [h,
] проволока A достигает максимальной температуры Т* то из (3.1) находим закон распределения температуры проволоки В
(3.3)
(3.4)
Учитывая, что TA=T*, получаем дифференциальное уравнение, решая которое закон находим изменения температуры проволоки В.
(3.5)
Здесь нам надо определить С=соnst. Для этого отрезок [A, B] обозначим через
. Тогда получаем точку
и откуда находим начальное условие для проволоки В:
(3.6)
тогда
(3.7)
следовательно
(3.8)
Из этой же системы находим закон распределения температуры муфеля:
(3.9)
откуда получим
(3.10)
Находим плотность потока j(x) из системы (3.1) учитывая ТА=Т*, (3.8), (3.10).
(3.11)
Пусть теперь на
известен закон распределения температуры проволоки А (см. рис1):
(3.12)
И пусть для проволоки В известно начальное условие:
(3.13)
Тогда согласно этому закону и начальному условию находим законы распределения температур проволоки В, муфеля и плотности j.
Учитывая уравнение (3.4) находим ТB(х)
(3.14)
(3.14) является линейным неоднородным уравнением вида [4]
(3.15)
Его решением является
(3.16)
Откуда находим
. (3.17)
Учитывая начальное условие (3.13) находим С=const
(3.18)
Подставляя С в (3.17) находим закон распределения температуры проволоки B:
Из (3.9) определим закон распределения температуры муфеля
(3.20)
Плотность теплового потока j находим из третьего уравнения системы (3.1), учитывая формулы (3.12), (3.19), (3.20).
Согласно второму параграфу на I=[-h; h] плотность потока j0 постоянная величина. Найдём её.
(3.21)
тогда
(3.22)
Учитывая (3.7) получаем
.
Определим неизвестный параметр
.Определить его можно исходя из условия (3
)
(3.23)
Перепишем это уравнение это уравнение в виде:
(3.24)
Решается это уравнение методом итераций. [1] Опишем схему решения: если каким-либо способом получено приближённое значение
(в качестве
можно взять произвольное значение из интервала, содержащего корень; такой интервал можно сделать достаточно малым) корня (3.24), то уточнение корня можно осуществить методом последовательных приближений. Для этого уравнение представляют в виде
, (3.25)
Что всегда можно сделать, и притом многими способами, например
, (3.26)
где c – произвольная постоянная.
Пусть число
есть результат подстановки
в правую часть уравнения (3.25):
(3.27)
Итерационный процесс сходится (
), если на отрезке [a; b], содержащем корень
и его последовательные приближения, выполнено условие
. (3.28)
4. Пример термообработки проволок на встречных курсах
Рассмотрим процесс термообработки проволок на встречных курсах аналогичный рассмотренному в предыдущем параграфе только в качестве закона распределения температуры проволоки А возьмём закон:
(4.1)
Тогда из системы (3.1) находим, ТВ(х), ТС(х) и плотность потока j, учитывая начальное условие (3.13).
Из (3.14) получаем
(4.2)
Решая его получаем:
(4.3)
Тогда
(4.4)
(4.5)
Заключение
В курсовой работе было рассмотрено: физические и математические модели термопроцессов на встречных курсах, простой и сложный отжиг проволок на встречных курсах в муфельном термоаппарате.
Приведены: методика исследования физических и математических моделей.
Рассмотрен пример термообработки проволок.
Список источников
1 Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы.– М. Издательство «Наука», 1987. – 600 с.
2 Гольдштейн М.И. Специальные стали – М. Издательство «Наука», 1968. – 500 с.
3 Островский О.И. Свойство металлических расплавов – М. Издательство «Наука», 1978. – 660 с.
4. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах стали – М. Издательство «Наука», 1986. – 350 с.
5 Матвеев Н.М. Методы интегрирования обыкновенных дифференциальных уравнений. – М: Издательство «Вышэйшая школа», 1974. – 250 с.
6 Михалин С.Г. Курс математической физики – М. Издательство «Наука», 1968. – 575 с.
0>














