85668 (612543), страница 2

Файл №612543 85668 (Інженерна графіка) 2 страница85668 (612543) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Рисунок 1.11 – Ділення кола на чотири та вісім рівних частин

Щоб поділити коло на три рівні частини (рис. 1.11 а), достатньо з точки А провести дугу кола, радіус якої дорівнює радіусу заданого кола до перетину з останнім у точках 1 та 3. Шукані точки1, 1, 3 ділять коло на три рівні частини.

Для ділення кола на шість рівних частин (рис. 1.11 б) необхідно з точок 1 та 4 провести дуги радіусом кола до перетину з останнім. Точки 1, 1, 3, 4, 5, 6 – ділять задане коло на шість рівних частин.

Щоб поділити коло на дванадцять частин (рис. 1.9 в), необхідно поділити його спочатку на шість частин, а потім з точок 4 та 10 провести такі самі дуги, щоб одержати точки 1, 6, 8 та 11. Точки 1, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11 – точки ділення кола на дванадцять рівних частин.

а) б) в)

Рисунок 1.11 – Ділення кола на три, шість та дванадцять частин

Приклад поетапного ділення кола на п’ять рівних частин наведений на рисунку 1.13.

Рисунок 1.13 – Ділення кола на п’ять рівних частин

Щоб поділити коло на п’ять рівних частин, необхідно послідовно виконати такі дії:

1) з точки А радіусом, який дорівнює радіусу даного кола, провести дугу, яка перетинає коло у точці n;

1) точка с визначається в перетині перпендикуляра, проведеного з точки n на горизонтальну осьову лінію. З точки с радіусом, який дорівнює відстані с1, провести дугу до перетину з горизонтальною осьовою лінією у точці m;

3) точка 1 визначається в перетині дуги кола радіусом 1m, проведеного з точки 1, із заданим колом;

4) для визначення точок, які поділять коло на п’ять рівних частин, необхідно циркулем послідовно зробити засічки на ньому радіусом, який дорівнює відстані 11.

Щоб поділити коло на сім рівних частин, необхідно послідовно виконати дії, проілюстровані на рисунку 1.14:

  • з точки А радіусом, який дорівнює радіусу заданого кола, провести дугу, яка перетинає коло в точці n;

  • з точки n опускають перпендикуляр на горизонтальну осьову лінію в точку с;

  • довжину перпендикуляра nс (помічена двома рисками) відкладають від точки 1 по колу сім разів – одержують шукані точки 1 – 7.

Рисунок 1.14 – Ділення кола на сім рівних частин

Існує спосіб, який дозволяє поділити коло на будь-яку кількість рівних частин. На рисунку 1.15 наведене поетапне ділення кола на сім рівних частин цим універсальним способом.

Рисунок 1.15 – Ділення кола на сім рівних частин

Для ділення кола на n рівних частин послідовно виконують такі дії:

– діаметр заданого кола ділимо на n рівних частин (рис. 1.8);

– з точки С радіусом, який дорівнює діаметру заданого кола, робимо засічки на горизонтальній осі – точки А та В;

– з точок А та В проведені промені через парні (або непарні) ділення діаметра кола;

– проведені промені ділять коло на сім рівних частин. Якщо їх з’єднати, матимемо правильний семикутник, вписаний у коло заданого діаметра.

2 Побудова спряжень

Обриси багатьох технічних форм складаються з ліній, які плавно переходять одна в одну. Приклади таких деталей наведені на рисунку 1.16.

Рисунок 1.16 – Контури деталей

Плавний перехід від однієї прямої або кривої лінії до іншої називається спряженням. Основними видами спряження є: спряження двох прямих ліній, спряження двох кіл, спряження прямої та кола. Кожне з перелічуваних спряжень має свої закони побудови, але при побудові будь-якого спряження дугою заданого радіуса необхідно встановити центр спряження та початкову і кінцеву точки спряження.

Для побудови спряження двох взаємно перпендикулярних прямих дугою заданого радіуса (R) необхідно з точки перетину прямих провести дугу, радіус якої дорівнює радіусу спряження, до перетину з прямими (точки А та В). З точок А та В провести дуги радіусів R до їх взаємного перетину. Визначена точка О є центром спряження. З точки О провести дугу радіуса заданого спряження, обмеженого точками А та В. На рисунку 1.17 наведена поетапна побудова спряження двох взаємно перпендикулярних прямих.

Рисунок 1.17 – Спряження двох взаємно перпендикулярних прямих

На рисунку 1.18 наведений приклад поетапної побудови спряжень прямих, розміщених під гострим та тупим кутом. Центр спряження знаходиться в перетині допоміжних прямих, проведених паралельно заданим прямим на відстані радіуса спряження (R). Початкову та кінцеву точки спряження визначають в перетині перпендикулярів, які проведені з центра спряження на задані прямі.

Рисунок 1.18 – Спряження двох прямих, розміщених під гострим та тупим кутом

При виконанні спряження двох кіл можливі два випадки: зовнішнє спряження та внутрішнє. На рисунку 1.19 наведений приклад поетапної побудови зовнішнього спряження.

Рисунок 1.19 – Побудова зовнішнього спряження двох кіл

На першому етапі визначається центр спряження в перетині дуг кіл, проведених з центрів кожного кола. Радіус кожної дуги дорівнює сумі радіуса кола та радіусу спряження (відповідно R+R1 та R+R1).

На другому етапі визначаються початкова та кінцеві точки спряження в перетині прямих, які з’єднують центр спряження та центри кіл із останніми.

На останньому етапі з точки О проводиться дуга радіусом R між точками А та В.

Аналогічно будується внутрішнє спряження двох кіл дугою заданого радіуса. Поетапна побудова внутрішнього спряження наведена на рисунку 1.10. Центр спряження (точка О) знаходиться в перетині дуг радіусів R-R1 та R-R1, проведених з центрів заданих кіл.

Рисунок 1.10 – Побудова внутрішнього спряження двох кіл

При виконанні спряжень прямої лінії та кола можливі два варіанти – спряження може бути внутрішнім або зовнішнім.

На рисунку 1.11 наведене поетапне виконання внутрішнього спряження кола радіусом R1 та прямої l. R – радіус спряження.

Рисунок 1.11 – Внутрішнє спряження прямої та кола

Центр спряження (точка О) визначений в перетині прямої, яка паралельна заданій прямій l та віддалена від неї на відстані R, та кола радіусом R-R1, проведеного з центра заданого кола.

Для визначення початкової та кінцевої точок спряження необхідно з точки О провести перпендикуляр на l (точка А) та з’єднати центр спряження та центр заданого кола (точка В). Спряження проведено з точки О радіусом R від точки А до точки В.

На рисунку 1.11 наведений приклад поетапного виконання зовнішнього спряження прямої l та кола радіусом R1. Центр спряження (точка О) – визначається в перетині допоміжної прямої, яка паралельна заданій прямій l та віддалена від неї на відстані R, з колом радіуса R+R1, проведеним з центра заданого кола. Подальші побудови виконана у послідовності, описаній вище.

Рисунок 1.11 – Зовнішнє спряження прямої та кола

2.1 Лекальні криві

Лекальними називають криві, характерні точки яких з’єднуються за допомогою лекала.

До лекальних кривих відносять еліпс, параболу, гіперболу, синусоїду, спіраль Архімеда, евольвенту, циклоїдну криву тощо.

Еліпс – це плоска крива, для довільної точки якої сума відстаней до двох фіксованих точок (фокусів F1 та F1) є величиною сталою та дорівнює довжині великої його осі. Поетапна побудова еліпса наведена на рисунку 1.13.

Побудову еліпса можна виконати за шість етапів:

  1. Відкласти значення великою та малої осей еліпса на відповідних осях. З перетину осей провести два концентричних кола, діаметри яких дорівнюють відповідно великій та малій осям еліпса.

  2. Поділити кола на будь-яке число рівних або нерівних частин.

  3. З точок поділу великого кола провести лінії, паралельні малій осі еліпса.

  4. З точок поділу малого кола провести лінії, паралельні великій осі еліпса.

  5. Визначити точки, які належать еліпсу: це точки, які обмежують велику та малу осі еліпса, та точки, знайдені у перетині допоміжних прямих (проведених відповідно до пунктів 3 та 4).

  6. З’єднати точки, які належать еліпсу, за допомогою лекала. Для точності побудов поступово з’єднують по три точки.

Рисунок 1.13 – Поетапна побудова еліпса

Парабола – плоска крива, кожна точка якої рівновіддалена від директриси – прямої, перпендикулярної до осі симетрії параболи, та від фокуса – точки, яка належить осі симетрії параболи. Для побудови параболи існують кілька способів. На рисунку 1.14 наведена поетапна побудова параболи, яка здійснюється у такій послідовності:

1 За вихідними даними побудувати прямокутник CDEG.

1 Відстані DА та АE поділити на n рівних частин (у наведеному прикладі-6). З кожної точки ділення провести вертикальні лінії, паралельні осі параболи.

3 Сторони прямокутника CD та EG ділять на таку саму кількість рівних частин (шість частин). Вершину параболи (точку А) з’єднують з вертикальними точками ділення.

4 У перетині допоміжних прямих одержують точки, які належать параболі.

5 Шукані точки поступово з’єднують за допомогою лекала.

Рисунок 1.14 – Поетапна побудова параболи

Синусоїда – плоска крива, утворена траєкторією точки кінця радіуса-вектора, який рівномірно обертається навколо центра і одночасно рівномірно поступально переміщується вздовж осі х. На рисунку 1.15 наведене поетапне виконання синусоїди. Вихідними даними є діаметр кола та період синусоїди.

Діаметр кола та відрізок періоду синусоїди поділити на будь-яку кількість рівних частин. Точки поділу кола позначені цифрами 1 – 11, а точки поділу відрізка періоду синусоїди – цифрами 11 – 111. Точки синусоїди знаходять в перетині горизонтальних прямих, проведених з точок ділення кола, та вертикальних прямих, проведених через точки поділу відрізка періоду синусоїди. Шукані точки з’єднують плавною кривою за допомогою лекала.

Рисунок 1.15 – Поетапна побудова синусоїди

Спіраль Архімеда – плоска крива, утворена траєкторією точки, що рівномірно рухається вздовж радіуса-вектора, який, у свою чергу, рівномірно обертається навколо нерухомого центра.

Для побудови спіралі Архімеда (рисунок 1.16) за заданим її кроком (величина кроку дорівнює відрізку 0 11) необхідно з точки 0 провести коло, радіус якого дорівнює кроку. Поділити коло та крок на довільну кількість рівних частин: точки 11-111 – це точки ділення кола, а точки 1 – 11 – точки ділення кроку.

Точки спіралі лежать на перетині радіальних променів, що сполучають точки поділу кола та його центр, і дуг кіл, проведених через відповідні точки поділу кроку спіралі.

Рисунок 1.16 – Спіраль Архімеда

Евольвентою називають криву, що є траєкторією точки прямої лінії, що котиться без ковзання по нерухомому колу. На рисунку 1.17 наведений приклад побудови евольвенти. Щоб побудувати множину точок евольвенти, коло ділять на довільну кількість рівних частин (у наведеному прикладі-8). З кожної точки поділу проводять дотичну до кола, на якій відкладають відрізок, що дорівнює довжині дуги кола від початкової точки до заданої.

Рисунок 1.17 – Евольвента

Циклоїдами називають криві, які є траєкторією руху точки кола, що без ковзання котиться по прямій або кривій. Вихідними даними для побудови циклоїди є коло певного радіуса. На рисунку 1.18 наведений приклад побудови циклоїди.

Рисунок 1.18 – Циклоїда

На першому етапі на горизонтальній прямій, яка є дотичною до заданого кола, відкласти відстань, що дорівнює довжині кола. Коло та пряму поділити на довільну кількість рівних частин (наприклад, на 11 частин).

На другому етапі необхідно з точок поділу прямої провести перпендикуляри до перетину з продовженням горизонтальної осі кола (точки О1 – О11).

На наступному етапі необхідно з точок поділу кола провести горизонтальні прямі, на яких зробити засічки дугами заданого кола, проведеними з точок О1 – О11.

Характеристики

Тип файла
Документ
Размер
15,12 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6999
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее