85634 (612533), страница 3
Текст из файла (страница 3)
- остаточное время обслуживания заявки, первой подсистемой, стоящей в
-ой позиции.
- остаточное время обслуживания заявки, второй подсистемой, стоящей в
-ой позиции.
остаточное время обслуживания заявки, третьей подсистемой, стоящей в
-ой позиции.

Система LCFS PR.
Заявка, поступающая в -ый узел, вытесняет заявку с прибора и начинает обслуживаться. Вытесненная заявка идет в начало очереди.
-
не Марковский процесс.
Рассматривается следующий процесс
- остаточное время обслуживания заявки, первой подсистемой, стоящей в
-ой позиции.
3.2 Составление дифференциально-разностных уравнений
Рассматриваем случайный процесс
Где h-некоторый достаточно малый промежуток времени.
Тогда вероятность события А будет равна сумме следующих вероятностей:
1. Если в промежутке времени h в систему не пришло ни одного требования и ни на одном приборе обслуживание не закончилось, то:
2. Если в промежутке времени h первая подсистема обслужила одну заявку, и произошел переход заявки на третью подсистему с вероятностью , то:
3. Если в промежутке времени h вторая подсистема обслужила одну заявку, то:
4. Если в промежутке времени h третья подсистема обслужила одну заявку и произошел выход заявки из системы с вероятностью 1, то:
5. Если в промежутке времени h на первую подсистему поступила одна заявка с интенсивностью , то:
6. Если в промежутке времени h на вторую подсистему поступила одна заявка с интенсивностью , то:
7. Если в промежутке времени h первая подсистема обслужила одну заявку и произошел переход заявки на вторую подсистему с вероятностью , то:
8. Если в промежутке времени h первая подсистема обслужила одну заявку и произошел переход заявки на первую подсистему с вероятностью
, то:
Тогда вероятность события А будет равна сумме данных восьми слагаемых.
Перейдем к функции распределения и составим систему дифференциально-разностных уравнений
(Будем использовать разложение функции распределения в ряд Тейлора)
Сократив одинаковые слагаемые, разделим обе части уравнения на h и устремим h к нулю. В результате преобразований мы получим следующую систему.
3.3 Поиск решения дифференциально-разностных уравнений
Тогда непосредственной подстановкой можем убедиться, что решением данного уравнения будет.
Приводя подобные слагаемые получили, что F-действительно решение этого уравнения. И таким образом
Список литературы
-
Гнеденко Б.В., Коваленко И.Н. Введение в теорию массового обслуживания. М.: Наука, 1966. - 431с.
-
Ширяев А.Н. Вероятность. - М.: Наука, 1980. - 575с.
-
Буриков А.Д., Малинковский Ю.В., Маталыцкий М.А. Теория массового обслуживания: Учебное пособие по спецкурсу. - Гродно, 1984. - 108с. (ГрГу).
-
Феллер В. Введение в теорию вероятностей и её приложения: в 2-х т. М.: Мир, 1967, - т.1,-498с.
-
Кениг Д., Штоян Д. Методы теории массового обслуживания. - М.: Радио и связь, 1981. - 127с.