85611 (612524), страница 2

Файл №612524 85611 (Законы больших чисел) 2 страница85611 (612524) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Определим два новых набора случайных величин, зависящих от , следующим образом:

Uk= , Vk=0, если (2.2)

Uk=0, Vk= , если

Здесь k=1,… , п и фиксировано. Тогда

=Uk+Vk (2.3)

при всех k.

Пусть {f( j)} — распределение вероятностей случайных величин (одинаковое для всех j). Мы предположили, что = M( ) существует, так что сумма

(2.4)

конечна. Тогда существует и

(2.5)

где суммирование производится по всем тем j, при которых . Отметим, что хотя и зависит от п, но оно одинаково для

U1, U2, ..., Un. Кроме того, при , и, следовательно, для произвольного > 0 и всех достаточно больших n

. (2.6)

Далее, из (2.5) и (2,4) следует, что

(2.7)

Uk взаимно независимы, и с их суммой U1+U2+…+Un можно поступить точно так же, как и с Xk в случае конечной дисперсии, применив неравенство Чебышева, мы получим аналогично (2.1)

(2.8)

Вследствие (2.6) отсюда вытекает, что

(2.9)

Далее заметим, что с большой вероятностью Vk = 0. Действительно,

(2.10)

Поскольку ряд (2.4) сходится, последняя сумма стремится к нулю при возрастании n. Таким образом, при достаточно большом п

P{Vk 0} (2.11)

и следовательно

P{V1+…+Vn 0} . (2.12)

Но , и из (2.9) и (2.12) получаем

(2.13)

Так как и произвольны, правая часть может быть сделана сколь угодно малой, что и завершает доказательство.

Теория «безобидных» игр

При дальнейшем анализе сущности закона больших чисел будем пользоваться традиционной терминологией игроков, хотя наши рассмотрения допускают в равной степени и более серьезные приложения, а два наших основных предположения более реальны в статистике и физике, чем в азартных играх. Во-первых, предположим, что игрок обладает неограниченным капиталом, так что никакой проигрыш не может вызвать окончания игры. (Отбрасывание этого предположения приводит к задаче о разорении игрока, которая всегда интригует изучающих теорию вероятностей.) Во-вторых, предположим, что игрок не имеет нрава прервать игру, когда ему заблагорассудится: число п испытаний должно быть фиксировано заранее и не должно зависеть от хода игры. Иначе игрок, осчастливленный неограниченным капиталом, дождался бы серии удач и в подходящий момент прекратил бы игру. Такого игрока интересует не вероятное колебание в заданный момент, а максимальные колебания в длинной серии партий, которые описываются скорее законом повторного логарифма, чем законом больших чисел .

Введем случайную величину k как (положительный или отрицательный) выигрыш при k-м повторении игры. Тогда сумма Sn = 1+…+ k является суммарным выигрышем при п повторениях игры. Если перед каждым повторением игрок уплачивает за право участия в игре (не обязательно положительный) взнос , то п представляет собой общий уплаченный им взнос, a Sn — п общий чистый выигрыш. Закон больших чисел применим, если p=M( k) существует. Грубо говоря, при больших п весьма правдоподобно, что разность Sп — п окажется малой по сравнению с п. Следовательно, если меньше, чем р, то при больших п игрок будет, вероятно, иметь выигрыш порядка . По тем же соображениям взнос практически наверняка приводит к убытку. Короче, случай благоприятен для игрока, а случай неблагоприятен.

Заметим, что мы еще ничего не говорили о случае . В этом случае единственно возможным заключением является то, что при достаточно большом и общий выигрыш или проигрыш Sn — п будет с очень большой вероятностью малым по сравнению с п. Но при этом неизвестно, окажется ли Sn — п положительным или отрицательным, т. е. будет ли игра выгодной или разорительной. Это не было учтено классической теорией, которая называла безобидной ценой, а игру с «безобидной». Нужно понимать, что «безобидная» игра может на самом деле быть и явно выгодной и разорительной.

Ясно, что в «нормальном случае» существует не только M( k), но и D( k). В этом случае закон больших чисел дополняется центральной предельной теоремой, а последняя говорит о том, что весьма правдоподобно, что при «безобидной» игре чистый выигрыш в результате продолжительной игры Sn — п будет иметь величину порядка n1/2 и что при достаточно больших п этот выигрыш будет с примерно равными шансами положительным или отрицательным. Таким образом, если применима центральная предельная теорема, то термин «безобидная» игра оказывается оправданным, хотя даже и в этом случае мы имеем дело с предельной теоремой, что подчеркивается словами «в результате продолжительной игры». Тщательный анализ показывает, что сходимость в (1.3) ухудшается при возрастании дисперсии. Если велико, то нормальное приближение окажется эффективным только при чрезвычайно больших п.

Для определенности представим машину, при опускании в которую рубля игрок может с вероятностью 10 выиграть (10—1) рублей, а в остальных случаях теряет опущенный рубль. Здесь мы имеем испытания Бернулли и игра является «безобидной». Проделав миллион испытаний, игрок уплатит за это миллион рублей. За это время он может выиграть 0, 1,2,... раз. Согласно приближению Пуассона для биномиального распределения, с точностью до нескольких десятичных знаков вероятность выиграть ровно к раз равна e-1/k!. Таким образом, с вероятностью 0,368 . . . игрок потеряет миллион, и с той же вероятностью он только окупит свои расходы; он имеет вероятность 0,184... приобрести ровно один миллион и т. д. Здесь 106 испытаний эквивалентны одному-единствеиному испытанию при игре с выигрышем, имеющим распределение Пуассона.

Очевидно, бессмысленно применять закон больших чисел в такого рода ситуациях. К этой схеме относится страхование от пожара, автомобильных катастроф и т. п. Риску подвергается большая сумма, но зато соответствующая вероятность очень мала. Однако здесь происходит обычно только одно испытание в год, так что число п испытаний никогда не становится большим. Для застрахованного игра обязательно не является «безобидной», хотя, может быть, экономически вполне выгодной. Закон больших чисел здесь не при чем. Что касается страховой компании, то она имеет дело с большим числом игр, но из-за большой дисперсии все же проявляются случайные колебания. Размер страховых премий должен быть установлен таким, чтобы предотвратить большой убыток в отдельные годы, и, следовательно, компанию интересует скорее задача о разорении, чем закон больших чисел.

Когда дисперсия бесконечна, термин «безобидная» игра становится бессмысленным; нет никаких оснований считать, что общий чистый выигрыш Sn — п колеблется около нуля. Действительно. существуют примеры «безобидных» игр, в которых вероятность того, что в результате игрок потерпит чистый убыток, стремится к единице. Закон больших чисел утверждает только, что этот убыток будет величиной меньшего порядка, чем п. Однако ничего большего утверждать и нельзя. Если ап образуют произвольную последовательность, причем ап/n 0 то можно устроить «безобидную» игру, в которой вероятность того, что общий чистый убыток в результате п повторений игры превышаем an стремится к единице.

15



Характеристики

Тип файла
Документ
Размер
1,38 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6918
Авторов
на СтудИзбе
266
Средний доход
с одного платного файла
Обучение Подробнее