85515 (612498), страница 2
Текст из файла (страница 2)
Т огда
. Из правил действии над векторами в координатах следует, что координаты точки С определяются формулами:
,
В частности, если С – середина отрезка АВ, то
,
Рассмотрим различные способы задания прямой на плоскости.
Пусть требуется написать уравнение прямой l, заданной в некоторой аффинной системе координат точкой М1 (х1, у1) и ненулевым вектором , параллельным прямой l (рис. 3).
Вектор будет называться направляющим вектором прямой l .
Пусть М (х, у) – произвольная точка прямой l . Тогда, согласно условию, векторы и коллинеарны тогда и только тогда, когда выполняется равенство
, или
= 1 + t,
где t – некоторое число (параметр). Это соотношение в координатах запишется так:
Полученные уравнения называют параметрическими уравнениями прямой.
При и
эти уравнения равносильны следующему уравнению первой степени:
Если прямая задана двумя различными точками: А (х1, у1) и В (х2, у2), то вектор = (х2 - х1, у2 - у1) является направляющим вектором прямой l. Следовательно, при х1 х2 и у1
у2 получаем уравнение
,
которое называется уравнением прямой, проходящей через две точки.
В частности, если прямая l проходит через точки А (а, 0) и В (0, b), отличные от начала координат, то уравнение прямой принимает вид
Это уравнение называется уравнением прямой в отрезках.
Исключая из параметрических уравнений прямой параметр t. При получим уравнение:
у - у1 = k (х - х1),
где . Число k называют угловым коэффициентом прямой. В частном случае, при х1 = 0 и у1 = b, уравнение принимает вид
Если же , то прямая l параллельна оси Оy, а её уравнение запишется так:
х = х1.
Таким образом, всякую прямую на плоскости можно задать уравнение первой степени Ах + Ву + С = 0, где хотя бы одно из чисел А и В отлично от нуля. Верно и обратное предложение: всякое уравнение первой степени Ах + Ву + С = 0 есть уравнение некоторой прямой в аффинной системе координат на плоскости.
При уравнение Ах + Ву + С = 0 приводится к виду у = kх + b, где
,
Если же В = 0 и , то оно принимает вид х = а, где
.
1.5. Декартова система координат на плоскости. Прямая и окружность.
Определение. Декартовой (или ортонормированной, или прямоугольной) системой координат на плоскости называется такая аффинная система координат, базисные векторы которой ортонормированны, то есть имеют единичные длины и ортогональны (перпендикулярны). Обозначение R = {O, , }; так что || = || = 1, перпендикулярен .
П ри решении задач, в которых существенную роль играет понятие расстояния между двумя точками, применяется, декартова или прямоугольная система координат.
Пусть даны две точки: А (х1, у1) и В (х2, у2). Тогда, как известно,
.
Пользуясь формулой, запишем уравнение окружности с центром в точке С (a, b) и радиусом r:
.
Вышеизложенная теория прямой справедлива и для прямоугольной системы координат. В частности, при решении задач пользуются уравнением прямой с угловым коэффициентом k, проходящей через точку А (х1, у1):
.
Отсюда следует, что угловой коэффициент прямой, заданной двумя точками А (х1, у1) и В (х2, у2), вычисляется по формуле
У гловой коэффициент в прямоугольной системе координат имеет следующий геометрический смысл:
, где
– величина угла от оси абсцисс до прямой l.
Пусть прямые l1 и l2 заданы своими уравнениями с угловыми коэффициентами: у = k1х + b1 и у = k2х + b2.
Если l1 || l2, то , поэтому k1 = k2, и обратно, т.е. условие k1 = k2 выражает признак параллельности прямых l1 и l2.
Введем формулу для вычисления угла между пересекающимися прямыми l1 и l2 (рис. 6).
Так как и
,
, то
или
Полученную формулу для вычисления угла от прямой l1 до прямой l2 можно записать и так:
Отсюда следует, что тогда и только тогда, когда k1k2 = - 1, т.е. условие k1k2 = - 1 выражает признак перпендикулярности прямых l1 и l2.
Приступая к решению геометрической задачи, следует рационально выбрать систему координат, присоединить её к данной фигуре наиболее естественным образом. Желательно, чтобы данные точки располагались на осях координат, тогда среди координат будут нули. Это позволит упростить вычисления.
1.6. Аналитическое задание геометрических фигур.Аналитическое условие и геометрические фигуры.
После того как на плоскости введена система координат, мы получаем возможность рассматривать на этой плоскости такие множества точек (а они - то и образуют те или иные геометрические фигуры), координаты х, у которых удовлетворяют тем или иным условиям (ограничениям). Эти условия могут носить характер уравнений, неравенств или систем уравнений и неравенств. Обратно, если на плоскости имеется некоторая геометрическая фигура (т.е. некоторое множество точек этой плоскости), то возникает задача нахождения аналитических условий, связывающих координаты х, у точек плоскости, которым удовлетворяют координаты всех точек данной фигуры и не удовлетворяют координаты никаких точек плоскости, не принадлежащих этой фигуре.
Аналитические условия, связывающие две переменных х, у и характеризующие фигуры Ф, с точки зрения математической логики представляют собой двухместный предикат Р(х, у), заданный на множестве вещественных чисел: х, у R. Множество истинности этого предиката как раз и представляют собой такое множество пар действительных чисел х, у, которые служат координатами точек фигуры Ф и только таких точек. Этот факт записывают следующим образом:
Ф = {М(х, у): Р(х, у) – истинно}.
При этом, нетрудно понять, что если предикат Р(х. у) представляет собой конъюнкцию двух предикатов P1(х, у) Р2 (х, у), то фигура Ф есть пересечение двух фигур Ф = {М (х, у): Р1 (х, у) Р2 (х, у) – истинно} = {М (х, у): Р1 (х, у) – истинно} {М (х, у): Р2 (х, у) – истинно} = Ф1 Ф2.
Аналогично, если предикат Р(х, у) представляет собой дизъюнкцию двух предикатов P1(х, у) Р2 (х, у), то фигура Ф есть объединение фигур Ф = Ф1 Ф2.
Итак, при координатном подходе к изучению геометрических фигур выделяются две взаимно обратные задачи:
-
по заданным геометрическим свойствам фигуры Ф составить аналитические условия Р (х, у), определяющие эту фигуру;
-
по заданным аналитическим условиям Р (х, у), определяющим фигуру Ф, выяснить её геометрические свойства.
Составление аналитических условий, определяющих фигуру.
Здесь по геометрическому описанию фигуры Ф требуется сформулировать такие аналитические условия Р(х, у), что будут справедливы два утверждения:
а) если точка М(х, у) Ф, то её координаты х, у удовлетворяют условиям Р(х, у), т.е. будучи поставлены в этот предикат, превращают его в истинное утверждение (высказывание);
б) если координаты точки М(х, у) удовлетворяют условиям Р(х, у), то М Ф.
Ясно, что второе утверждение можно заменить равносильным ему утверждением:
б`) если точка М не принадлежит фигуре Ф, то её координаты не удовлетворяют условию Р(х, у).
Практически это делается так. На данной фигуре Ф берется произвольная (или, как говорят, текущая) точка М(х, у) с текущими координатами х, у и отыскивается (необходимые и достаточные) условия принадлежности точки М фигуре Ф, т.е. строится некая модель этой геометрической ситуации (принадлежности М Ф). Затем в этой модели найденные условия переводятся на аналитический язык, т.е. на язык аналитической взаимосвязи текущих координат х, у текущей точки М.
Пример. Пусть на плоскости задана декартова система координат R = {O, , }. Составим аналитические условия, определяющие правую полуплоскость с граничной прямой Оу вместе с её границей. Таким условием будет неравенство , т.е. правая полуплоскость состоит из тех и только тех точек М(х, у), первые координаты которых (абсциссы) неотрицательны, поскольку все точки правой полуплоскости этим свойством обладают, а никакие точки, не принадлежащие правой полуплоскости (т.е. принадлежащие левой плоскости без граничной прямой Оу), этим свойством не обладают ( для них
).
Аналитические условия, определяющие I координатную четверть, представляют собой конъюнкцию двух предикатов: , которые задают эту четверть как пересечение двух полуплоскостей: верхней (задаётся условием
) и правой (задается условием
). Аналогично, II четверть:
; III четверть:
; IV четверть:
.
Из рассмотренных примеров видим, что аналитическое задание линий (или, как еще говорят, кривых линий, или, короче, кривых) приводит к уравнениям с двумя неизвестными х, у вида:
F (х, у) = 0
Здесь следует отметить, что дать строгое определение понятию линии в том адекватном смысле, в каком мы осознаем эти математические объекты с интуитивной точки зрения, весьма непросто. Понятие линии является одним из сложных понятий математики. Самое общее определение этого понятия рассматривается в топологии. Это понятие впервые было определено математиком П.С. Урысоном в 20-х годах XX века. Ограничимся пока следующими двумя определениями.
Определение. Уравнением данной линии L в заданной системе координат R = {О; 1, 2} называется такое уравнение F (х, у) = 0 с двумя неизвестными х, у, которому удовлетворяют координаты х, у каждой точки этой линии (т.е. будучи представлены в это уравнение превращают его в верное равенство) и не удовлетворяют координаты никакой точки, не принадлежащей этой линии.
М (х, у) – текущая точка линии L; х, у – текущие координаты.
Определение. Линией, определяемой уравнением F (х, у) = 0 в заданной системе координат R = {О; 1, 2}, называется множеством (или совокупность, или геометрическое место) всех точек плоскости, координаты которых удовлетворяют данному уравнению.