48206 (608493), страница 2

Файл №608493 48206 (Приховані марківські процеси) 2 страница48206 (608493) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Приклад кульок у вазах. Зараз ми доповнимо ПММ новими структурними елементами, для того, щоб вона могла вирішувати ряд більш складних завдань. Допоможе нам в цьому приклад з кульками у вазах (мал. 3).

мал. 3. Модель з N станами (вазами) та кульками, кольори яких позначають елементи що спостерігається послідовності.

Припустимо, у нас є N скляних прозорих ваз. У кожній вазі - велике число кульок різного кольоруВважаємо, що у нас в кошику лежать кульки M різних кольорів. Фізично це можна представити наступним чином. Людина знаходиться в кімнаті з вазами. Яким-небудь випадковим чином він вибирає будь-яку вазу, простягає руку глибше, і витягує м'яч. Колір кулі записується в журнал показань - спостерігається послідовність, і людина кладе шар назад в цю вазу. Потім наша людина вибирає нову вазу, і йде до неї, і витягує звідти новий шар, і так далі. В результаті ми отримуємо послідовність кольорів - результат роботи ПММ - спостерігається послідовність.

Очевидно, що приклад кульок у вазах відповідає прихованої марківській моделі, де кожне стан моделі - це обрана ваза, причому в різних ваз різну ймовірність витягти кульку червоного (або іншого) кольору, що відповідає різного розподілу ймовірностей для кожного стану. Те, яка ваза буде обрана наступної, залежить від матриці переходів ПММ, т. е. залежить і від того, у якої вази ми зараз знаходимося.[1]

Елементи прихованої марківської моделі

Наведені вище приклади дають непогане уявлення про ПММ, і про можливі сферах їх застосування. Зараз ми дамо формальне визначення елементів ПММ і зрозумілий, як модель генерує спостережувану послідовність. ПММ визначається наступними елементами:

1. N - загальна кількість станів в моделі. Незважаючи на те, що стану в ПММ є прихованими, у багатьох випадках є відповідність між станом моделі і реальним станом процесу. У прикладі з підкиданням монети кожне стан відповідно до обраної монеті, а в прикладі з кульками у вазах стан моделі відповідно до обраної вазі. В загальному, перехід у будь-який обраний стан можливий з будь-якого стану всієї системи (в тому числі й сама в себе); з іншого боку, і це ми побачимо згодом, лише певні шляхи переходів представляють інтерес у кожної конкретної моделі. Ми позначимо сукупність станів моделі безліччю , , a поточний стан в момент часу t як q.

2. M, кількість можливих символів у що спостерігається послідовності, розмір алфавіту послідовності. У випадку з підкиданням монети - це 2 символу: орел і решка; у випадку з кульками - це кількість кольорів цих самих кульок. Алфавіт що спостерігається в послідовності ми позначимо як .

3. Матриця ймовірностей переходів (або матриця переходів) , де

, (7)

ттобто це ймовірність того, що система, що перебуває в стані Si, перейде в стан Sj. Якщо для будь-яких двох станів в моделі можливий перехід з одного стану в інше, то a i j> 0 для будь-яких i, j. В інших ПММ для деяких i, j у нас ймовірність переходу a i j = 0.

4. Розподіл ймовірностей появи символів у j-тому стані, , где , де

(8)

b j (k) - імовірність того, що в момент часу t, система, яка знаходиться в j-му стані (стан Sj), видасть k-тий символ (символ k) в спостережувану послідовність.

5. Розподіл ймовірностей початкового стану , где , де

, , (9)

тобто ймовірність того, Si - це початковий стан моделі.

Сукупність значень N, M, A, B і π - це прихована марківська модель, яка може згенерувати послідовність

(10)

(де O t — один з символів алфавіту V , а T — це кількість елементів в послідовності.

ПММ будує спостережувану послідовність по наступному алгоритмі

  1. Вибираємо початковий стан q 1 = S i відповідно до розподілу π

  2. Встановлюємо t = 1 .

  3. Вибираємо O t = v k відповідно до розподілу b j ( k ) у стані ( S i ).

  4. Переводимо модель у новий стан q t + 1 = S j відповідно до матриці переходів a i j з урахуванням поточного стану S i .

  5. Встановлюємо час t = t + 1 ; вертаємося до кроку 3, якщо t < T ; інакше — закінчуємо виконання.

Підбиваючи підсумок, можливо помітити, що повний опис ПММ складається із двох параметрів моделі ( N і M ), опису символів спостережуваної послідовності й трьох масивів ймовірностей — A , B , і π . Для зручності ми використаємо наступний запис

(11)

для позначення достатнього опису параметрів моделі.

5. Основні результати, які отримані в результаті вирішення задачі

Відповідно до опису схованої марківської моделі, викладеному в попередньому розділі, існує три основних задачі, які повинні бути вирішені для того, щоб модель могла успішно вирішувати поставлені перед нею задачі.

Задача 1

Дано: спостережувана послідовність і модель λ = ( A , B ,π) . Необхідно обчислити ймовірність P ( O | λ) — імовірність того, що дана спостережувана послідовність побудована саме для даної моделі.

Задача 2

Дано: спостережувана послідовність і модель λ = ( A , B ,π) . Необхідно підібрати послідовність станів системи , що найкраще відповідає спостережуваній послідовності, тобто «пояснює» спостережувану послідовність.

Задача 3

Підібрати параметри моделі λ = ( A , B ,π) таким чином, щоб максимізувати P ( O | λ) .

Задача 1 - це задача оцінки моделі, що полягає в обчисленні ймовірності того, що модель відповідає заданій спостережуваній послідовності. До суті цієї задачі можна підійти й з іншої сторони: наскільки обрана ПММ відповідає заданій спостережуваній послідовності. Такий підхід має більшу практичну цінність. Наприклад, якщо в нас коштує питання вибору найкращої моделі з набору вже існуючих, то рішення першої задачі дає нам відповідь на це питання.

Задача 2 - це задача, у якій ми намагаємося зрозуміти, що ж відбувається в прихованій частині моделі, тобто знайти «правильну» послідовність, що проходить модель. Зовсім ясно, що абсолютно точно не можна визначити цю послідовність. Тут можна говорити лише про припущення з відповідним ступенем вірогідності. Проте для наближеного рішення цієї проблеми ми звичайно будемо користуватися деякими оптимальними показниками, критеріями. Далі ми побачимо, що, на жаль, не існує єдиного критерію оцінки для визначення послідовності станів. При рішенні другої задачі необхідно кожний раз ухвалювати рішення щодо того, які показники використати. Дані, отримані при рішенні цієї задачі використаються для вивчення поводження побудованої моделі, знаходження оптимальної послідовності її станів, для статистики й т.п. [6]

Рішення задачі 3 складається в оптимізації моделі таким чином, щоб вона якнайкраще описувала реальну спостережувану послідовність. Спостережувана послідовність, по якій оптимізується ПММ, прийнято називати навчальною послідовністю, оскільки за допомогою її ми «навчаємо» модель. Задача навчання ПММ - це найважливіша задача для більшості проектованих ПММ, оскільки вона полягає в оптимізації параметрів ПММ на основі навчальної спостережуваної послідовності, тобто створюється модель, що щонайкраще описує реальні процеси.

Для кращого розуміння розглянемо все вищесказане на прикладі системи, призначеної для розпізнавання мови. Для кожного слова зі словника W ми спроектуємо ПММ із N станами. Кожне слово зокрема ми представимо як послідовність спектральних векторів. Навчання ми будемо вважати завершеним, коли модель із високою точністю буде відтворювати ту саму послідовність спектральних векторів, що використалася для навчання моделі. У такий спосіб кожна окрема ПММ буде навчатися відтворювати яке-небудь одне слово, але навчати цю модель треба на декількох варіантах проголошення цього слова; тобто наприклад три чоловіки (кожний по-своєму) проговорюють слово «собака», а потім кожне сказане слово конвертується в упорядкований за часом набір спектральних векторів, і модель навчається на основі цих трьох наборів. Для кожного окремого слова проектуються відповідні моделі. Спершу вирішується 3-я задача ПММ: кожна модель настроюється на «проголошення» певного слова зі словника W , відповідно до заданої точності. Для того щоб інтерпретувати кожний стан спроектованих моделей ми вирішуємо 2-ую задачу, а потім виділяємо ті властивості спектральних векторів, які мають найбільша вага для певного стану. Це момент тонкого настроювання моделі. А вже після того, як набір моделей буде спроектований, оптимізований і навчений, варто оцінити модель на предмет її здатності розпізнавати слова в реальному житті. Тут ми вже вирішуємо 1-ую задачу ПММ. Нам дається тестове слово, представлене, зрозуміло, у вигляді спостережуваної послідовності спектральних векторів. Далі ми обчислюємо функцію відповідності цього тестового слова для кожної моделі. Модель, для якої ця функція буде мати найбільше значення, буде вважатися моделлю названого слова.

6. Місце і спосіб застосування отриманих результатів

Для розпізнавання мовлення із великих словників для ізольовано (або дискретно) вимовлених слів на початку 90-х років було розроблено декілька систем з достатньо гарними показниками. Потім увага дослідників перенеслася на розпізнавання злитого мовлення, де використовувалися статистичні залежності в порядку слів, що дозволяло передбачити поточне розпізнаване слово на основі кількох попередніх слів. Розроблені статистичні методи прогнозу дозволили значно зменшити кількість альтернатив при розпізнаванні, що у свою чергу дозволило розробляти системи розпізнавання з сумарним обсягом у десятки тисяч слів, хоча на кожному кроці розпізнавання розглядалося декілька сотень альтернатив.

Проте, існує необхідність побудови систем розпізнавання мови з великою кількістю альтернатив і за умови, що немає яких-небудь обмежень на порядок розпізнаваних слів.

Наприклад, при керуванні комп'ютера голосом неможливо передбачити наступне слово на основі декількох попередніх, оскільки це визначається логікою керування комп'ютера, а не властивостями тексту. З іншого боку існує необхідність значного збільшення обсягу словника для того, щоб охопити всі синоніми однієї і тієї ж команди, оскільки користувачу, звичайно, важко запам'ятати тільки один варіант назви команди.

Другий приклад пов'язаний з диктуванням текстів. Використання таких систем, звичайно, обмежено такими текстами, що аналогічні тим текстам, для яких накопичувалися статистики. Крім іншого, додаткове редагування набраного тексту вимагає наявності всіх слів в активному словнику.

Таким чином, існують додатки, де бажано мати словник максимально великого розміру, щоб у майбутньому охопити всі слова даної мови.

Додаткова інформація для обмеження числа альтернатив може бути одержана безпосередньо з мовного сигналу. Для цього пропонується виконати пробне розпізнавання за допомогою фонетичного стенографа. Одержана послідовність фонем формує потік запитів до бази даних для отримання невеликої кількості слів, які могли б входити в словник розпізнавання, що дозволяє значно скоротити кількість альтернатив для розпізнавання.[3]

Наступні розділи описують новий двопрохідний алгоритм. Спочатку представлена базова система для порівняння із запропонованою системою розпізнавання мови. Потім описані два варіанти алгоритму для ізольованих слів та злитого мовлення. Виконані експерименти показують ефективність запропонованих методів.

Характеристики

Тип файла
Документ
Размер
1,46 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6635
Авторов
на СтудИзбе
294
Средний доход
с одного платного файла
Обучение Подробнее