47780 (608370), страница 3

Файл №608370 47780 (Обработка информации и принятие решения в системах ближней локации) 3 страница47780 (608370) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

qq=[qq pkolm];% критические уровни значимости

end

[maxqq, bdistr]=max(qq);% выбрали лучшее распределение

fprintf(['Лучше всего подходит % s;\nкритический уровень '…

'значимости для него =%8.5f\n'], s{bdistr}, maxqq);

figure

cdfplot(x);% эмпирическая функция распределения

xpl=linspace (xl, xr, 500);% для графика F(x)

ypl=cdf (tdistr{bdistr}, xpl, param (bdistr, 1), param (bdistr, 2));

hold on% для рисования на этом же графике

plot (xpl, ypl, 'r');% дорисовали F(x)

hold off

set (get(gcf, 'CurrentAxes'),…

'FontName', 'Times New Roman Cyr', 'FontSize', 12)

title(['\bfПодобрано ' s{bdistr}])

xlabel ('\itx')% метка оси x

ylabel ('\itf\rm (\itx\rm)')% метка оси y

Результат:

Лучше всего подходит нормальное распределение;

критический уровень значимости для него = 0.31369

Рис. 11 – График эмпирической функции распределения для сигнала гусеничной техники

Рис. 12 – График эмпирической функции распределения для фонового сигнала

Найденный критический уровень значимости – это то значение q, при котором неравенство (19) обращается в равенство.

Вывод: По полученным результатам можно сделать вывод, что по данному критерию распределение подобранно верно.

1.6 Проверка гипотезы по критерию согласия Пирсона

По критерию Пирсона сравниваются теоретическая и эмпирическая функции плотности распределения вероятности, а точнее – частота попадания случайной величины в интервал. Интервалы могут быть любыми, равными и неравными, но удобно использовать те интервалы, на которых построена гистограмма. Эмпирические числа попадания n (из гистограммы) сравнивается с теоретическим npj, где pj – вероятность попадания случайной величины X в j-ый интервал:

, (20)

aj и bj – границы j-го интервала. Карл Пирсон показал, что, если все npj 5, то суммарная квадратическая относительная разность между теоретическим и практическим числом попаданий в интервал равна

(21)

имеет приближенно 2 распределение Пирсона с k m степенями свободы, где m – число параметров, оцениваемых по выборке, плюс 1. Так как параметров два, то m = 3. Выражение (21) представляет собой статистику Пирсона.

Теоретическое распределение можно считать подобранным верно, если выполняется условие

. (22)

Построим таблицу результатов, в которую занесем: номера интервалов (1-й столбец), границы интервалов aj и bj (2-й и 3-й столбцы), вероятность попадания в интервал pj (4-й столбец), теоретическое число попаданий и практическое число попаданий npj (6-й столбец). Границы интервалов и практическое число попаданий взяты из гистограммы, теоретическая вероятность попадания в j-й интервал подсчитывается по выражению (20).

Практическая часть.

clear Tabl% очистили таблицу результатов

Tabl(:, 1)=[1:k]';% номера интервалов

Tabl(:, 2)=xm'-delta/2;% левые границы интервалов

Tabl(:, 3)=xm'+delta/2;% правые границы интервалов

Tabl (1,2)=-inf;% теоретическое начало 1-го интервала

Tabl (k, 3)=inf;% теоретический конец последнего интервала

Tabl(:, 4)=nj';% опытные числа попаданий

bor=[Tabl(:, 2); Tabl (end, 3)];% все границы интервалов

pro=cdf (tdistr{bdistr}, bor, param (bdistr, 1), param (bdistr, 2));

Tabl(:, 5)=pro (2:end) – pro (1:end-1);% вероятности попаданиz pj

Tabl(:, 6)=n*Tabl(:, 5);% теоретическое число попаданий npj

disp ('Сводная таблица результатов')

fprintf (' j aj bj')

fprintf (' nj pj npj\n')

fprintf (' % 2.0f % 12.5f % 12.5f % 6.0f % 12.5f % 12.5f\n', Tabl')

Для сигнала гусеничной техники:

Сводная таблица результатов

j aj bj nj pj npj

1 – Inf -0.09544 2 0.00000 0.01837

2 -0.09544 -0.09464 2 0.00000 0.00408

3 -0.09464 -0.09385 0 0.00000 0.00495

4 -0.09385 -0.09306 1 0.00000 0.00599

5 -0.09306 -0.09226 1 0.00000 0.00724

6 -0.09226 -0.09147 0 0.00000 0.00873

7 -0.09147 -0.09067 0 0.00000 0.01052

8 -0.09067 -0.08988 4 0.00000 0.01266

9 -0.08988 -0.08909 0 0.00000 0.01520

10 -0.08909 -0.08829 0 0.00000 0.01824

11 -0.08829 -0.08750 2 0.00000 0.02184

12 -0.08750 -0.08671 2 0.00000 0.02612

13 -0.08671 -0.08591 0 0.00000 0.03118

14 -0.08591 -0.08512 3 0.00000 0.03718

15 -0.08512 -0.08433 1 0.00000 0.04425

Для фонового сигнала:

Сводная таблица результатов

j aj bj nj pj npj

1 – Inf 0.01067 1 0.00000 0.00000

2 0.01067 0.01074 0 0.00000 0.00000

3 0.01074 0.01080 0 0.00000 0.00000

4 0.01080 0.01086 0 0.00000 0.00000

5 0.01086 0.01092 0 0.00000 0.00000

6 0.01092 0.01098 0 0.00000 0.00000

7 0.01098 0.01104 0 0.00000 0.00000

8 0.01104 0.01111 0 0.00000 0.00000

9 0.01111 0.01117 0 0.00000 0.00000

10 0.01117 0.01123 0 0.00000 0.00000

11 0.01123 0.01129 0 0.00000 0.00000

12 0.01129 0.01135 0 0.00000 0.00000

13 0.01135 0.01141 0 0.00000 0.00000

14 0.01141 0.01147 0 0.00000 0.00000

15 0.01147 0.01154 0 0.00000 0.00000

Если распределение подобрано, верно, то числа из 4-го и 6-го столбцов не должны сильно отличаться.

Вывод: Для сигнала гусеничной техники числа из 4-го и 6-го столбцов значительно отличаются, значит, распределение подобрано неверно. А для фонового сигнала эти числа практически совпадают.

Проверим выполнение условия npj 5 и объединим те интервалы, в которых npj< 5. Перестроим таблицу и добавим в нее еще один, 7-й столбец – слагаемое, вычисляемое по выражению (21).

Практическая часть.

qz=0.3;% выбрали уровень значимости

ResTabl=Tabl (1,1:6);% взяли первую строку

for k1=2:k, % берем остальные строки таблицы

if ResTabl (end, 6)<5, % предыдущее npj<5 – будем суммировать

ResTabl (end, 3)=Tabl (k1,3);% новая правая граница интервала

ResTabl (end, 4:6)=ResTabl (end, 4:6)+Tabl (k1,4:6);% суммируем

else% предыдущее npj>=5 – будем дописывать строку

ResTabl=[ResTabl; Tabl (k1,1:6)];% дописываем строку

end

end

if ResTabl (end, 6)<5, % последнее npj<5

ResTabl (end – 1,3)=ResTabl (end, 3);% новая правая граница

ResTabl (end – 1,4:6)=ResTabl (end – 1,4:6)+ResTabl (end, 4:6);

ResTabl=ResTabl (1:end-1,:);% отбросили последнюю строку

end

kn=size (ResTabl, 1);% число объединенных интервалов

ResTabl(:, 1)=[1:kn]';% новые номера интервалов

ResTabl(:, 7)=(ResTabl(:, 4) – ResTabl(:, 6)).^2./ResTabl(:, 6);

disp ('Сгруппированная сводная таблица результатов')

fprintf (' j aj bj')

fprintf (' nj pj npj ')

fprintf([' (nj-npj)^2/npj\n'])

fprintf (' % 2.0f % 12.5f % 12.5f % 6.0f % 12.5f % 12.5f % 12.5f\n', ResTabl')

hi2=sum (ResTabl(:, 7));% сумма элементов последнего столбца

fprintf(['Статистика Пирсона chi2=%10.5f\n'], hi2)

m=[3,2,3,2];% число ограничений

fprintf ('Задаем уровень значимости q=%5.4f\n', qz)

chi2qz=chi2inv (1-qz, kn-m(bdistr));% квантиль

fprintf(['Квантиль chi2-распределения Пирсона '…

'chi2 (1-q)=%10.5f\n'], chi2qz)

if hi2<=chi2qz,

disp ('Распределение подобрано верно, т. к. chi2<=chi2 (1-q)')

else

disp ('Распределение подобрано неверно, т. к. chi2>chi2 (1-q)')

end

Для сигнала гусеничной техники:

Сгруппированная сводная таблица результатов

j aj bj nj pj npj (nj-npj)^2/npj

1 – Inf -0.07004 58 0.00009 5.46033 505.53988

2 -0.07004 -0.06607 32 0.00011 6.16617 108.23348

3 -0.06607 -0.06369 17 0.00011 6.35867 17.80845

4 -0.06369 -0.06210 16 0.00010 5.89961 17.29233

5 -0.06210 -0.06051 16 0.00013 7.65444 9.09908

6 -0.06051 -0.05893 16 0.00017 9.87115 3.80530

7 -0.05893 -0.05813 9 0.00010 5.93889 1.57781

8 -0.05813 -0.05734 16 0.00012 6.71391 12.84370

9 -0.05734 -0.05655 12 0.00013 7.57856 2.57953

10 -0.05655 -0.05575 17 0.00015 8.54160 8.37603

11 -0.05575 -0.05496 15 0.00017 9.61240 3.01967

12 -0.05496 -0.05416 17 0.00019 10.80104 3.55773

13 -0.05416 -0.05337 13 0.00021 12.11825 0.06416

14 -0.05337 -0.05258 26 0.00024 13.57548 11.37115

15 -0.05258 -0.05178 20 0.00026 15.18487 1.52688

Статистика Пирсона chi2=2613.15423

Задаем уровень значимости q=0.3000

Квантиль chi2-распределения Пирсона chi2 (1-q)= 182.25040

Распределение подобрано неверно, т. к. chi2>chi2 (1-q)

Вывод: По критерию Пирсона распределение подобрано неверно, т. к. реальное значение статистики χ2р=2613.15423 намного превышает критическое значение χ2т,f=182.25040, следовательно, гипотеза о нормальном законе распределения амплитуд сигнала не подтверждается на уровне значимости 0.05.

Для фонового сигнала:

Сгруппированная сводная таблица результатов

j aj bj nj pj npj (nj-npj)^2/npj

1 – Inf 0.01690 11 0.00026 7.51515 1.61596

2 0.01690 0.01702 13 0.00031 8.99732 1.78070

3 0.01702 0.01708 14 0.00026 7.55999 5.48594

4 0.01708 0.01714 15 0.00037 10.63561 1.79095

5 0.01714 0.01720 13 0.00052 14.78664 0.21588

6 0.01720 0.01727 24 0.00071 20.31617 0.66797

7 0.01727 0.01733 33 0.00097 27.58544 1.06279

8 0.01733 0.01739 35 0.00130 37.01551 0.10975

9 0.01739 0.01745 54 0.00172 49.08550 0.49205

10 0.01745 0.01751 58 0.00225 64.32627 0.62217

11 0.01751 0.01757 79 0.00291 83.30848 0.22282

12 0.01757 0.01764 102 0.00373 106.62418 0.20055

13 0.01764 0.01770 137 0.00472 134.86147 0.03391

14 0.01770 0.01776 167 0.00590 168.57212 0.01466

15 0.01776 0.01782 185 0.00729 208.23287 2.59213

Статистика Пирсона chi2= 57.37478

Задаем уровень значимости q=0.3000

Квантиль chi2-распределения Пирсона chi2 (1-q)= 66.27446

Распределение подобрано, верно, т. к. chi2<=chi2 (1-q)

Вывод: Для фонового сигнала по критерию Пирсона распределение подобрано верно, т. к. реальное значение статистики χ2р=609411.53699 не превышает критическое значение χ2т,f=520.15366, следовательно, гипотеза о нормальном законе распределения амплитуд сигнала подтверждается.

1.7 Построение корреляционной функции для фрагмента сигнала длительностью 2000 отсчетов

Для построения корреляционной функции двух сигналов, выберем фрагменты сигналов:

Практическая часть

%Начало фрагмента задается величиной N1

N1=25001;

% конец фрагмента задается величиной N2

N2=26000;

x=tr_t200 (N1:N2); %вырезали фрагмент сигнала

r=xcorr (x, x); %Вычисление корреляционной функции

Рисунок 13 – График исходного сигнала гусеничной техники

Для сигнала гусеничной техники выбираем наиболее информативный участок от 54000 до 55000.

Рисунок 14 – График исходного фонового сигнала

Для фонового сигнала выбираем наиболее информативный участок то 45000 до 46000.

Для сигнала гусеничной техники:

h1=tr_t200 (54000:55000);% вырезали фрагмент

k=1000;

KF=xcorr (h1, h1, k);% КФ

k1=-k:k; plot (k1, KF);%построили КФ

Рисунок 15 – График корреляционной функции сигнала гусеничной техники

Вывод: График имеет квазипериодический характер. Повтор явных всплесков колебаний через каждые 250÷300 отсчетов. По корреляционной функции также можно сказать, что сигнал имеет колебательный случайный характер. Так же можно сказать, что функция не стационарна, так как дисперсия ее не постоянна. Период колебания корреляционной функции сигнала гусеничной техники составляет примерно 290 отсчетов (0.58 с).

Для фонового сигнала:

h2=fon (15000:16000);% вырезали фрагмент

k=1000;

KF=xcorr (h2, h2, k);% КФ

k1=-k:k; plot (k1, KF);%построили КФ

Рисунок 16 – График корреляционной функции фонового сигнала

Вывод: по корреляционной функции для фонового сигнала можно сказать, что сигнал имеет колебательный случайный характер. Так же можно сказать, что функция не стационарна, так как дисперсия ее не постоянна. Период колебания корреляционной функции фонового сигнала составляет приблизительно 190 отсчетов.

2. Формирование обучающих и контрольных множеств данных

2.1 Признаки по оценке спектра мощности сигнала в восьми интервалах частот

Теоретический раздел

При обнаружении и распознавании объектов по сейсмическим сигналам возникает задача выбора признаков.

Признаки должны удовлетворять двум основным требованиям:

1 Устойчивость. Наиболее устойчивыми считаются признаки, отвечающие нормальному закону распределения (желательно, чтобы значения признаков не выходили за пределы поля допуска);

2 Сепарабельность. Чем больше расстояние между центрами классов и меньше дисперсия в классе, тем выше показатели качества системы обнаружения или классификации.

В данной работе признаками являются: распределение мощности в десяти равномерных интервалах (по 25 гармоник).

Практическая часть

x1=tr_t200-mean (tr_t200);%Введение центрированного сигнала одного

человека.

x2=fon-mean(fon);%Введение центрированного сигнала

группы людей.

Признаки вычисляются с использованием подгружаемого файла MATRPRIZP:

function [P, Ps]=f (x, fs, N1, N2)

% Программа вычисления матрицы признаков относительной мощности

% сигнала в 10-ти поддиапазонах частот

% Обращение к процедуре: P=MATRPRIZP (x, fs, N1, N2); или [P, Ps]=MATRPRIZP (x, fs, N1, N2);

% x – исходный дискретный сигнал

% P – матрица признаков

% Ps – матрица сглаженных признаков

% Pk – спектр мощность сигнала в текущем окне

% N1 – длинна нарезанных сигналов в отсчетах

% N2 – сдвиг в отсчетах между соседними сигналами

% M – матрица сигналов размерности N1*N2

% Nc – число строк матрицы сигналов

M=matrsig (x, N1, N2);

Nc=length (M(:, 1));

for i=1: Nc Pk(:, i)=SM (M(i,:)', N1, fs); end;

Pk=Pk';

for i=1: Nc

w=sum (Pk(i,:));

P (i, 1)=sum (Pk(i, 1:51))/w; P (i, 2)=sum (Pk(i, 52:103))/w; P (i, 3)=sum (Pk(i, 104:155))/w; P (i, 4)=sum (Pk(i, 156:207))/w;…

P (i, 5)=sum (Pk(i, 208:259))/w; P (i, 6)=sum (Pk(i, 260:311))/w; P (i, 7)=sum (Pk(i, 312:363))/w; P (i, 8)=sum (Pk(i, 364:415))/w; P (i, 9)=sum (Pk(i, 416:467))/w; P (i, 10)=sum (Pk(i, 468:512))/w;

end;

Пропускаем сигналы через формирование матрицы признаков:

x=tr_t200;

N1=1024;

N2=512;

fs=500;

Mt=MATRPRIZP (x, fs, N1, N2);

x=fon;

N1=1024;

N2=512;

fs=500;

Mf=MATRPRIZP (x, fs, N1, N2);

Получим графические представления матриц признаков:

Рисунок 17 – Графическое представление матрицы признаков сигнала гусеничной техники

Рисунок18 – Графическое представление матрицы признаков фонового сигнала

  1. Исследование признаков

Практическая часть

Для обучающей матрицы произвести исследование признаков по следующей программе: 1) Оценить параметры распределения признаков; 2) По каждому признаку обучающей матрицы вычислить расстояние. Для данного признака сформулировать решающее правило задачи обнаружения.

3.1 Оценка параметров распределения признаков. Определение информативного признака с максимальным расстоянием, построение функций плотности распределения вероятностей и вычисление порога принятия решения, формулирование решающего правила

Загружаем сигнал в рабочее пространство:

h1=fon-mean(fon);

h2=tr_t200-mean (tr_t200);

N1=1024;

N2=512;

fs=500;

Пропускаем сигнал через решетку фильтров Батерворда:

[M, Mf]=MATRPRIZP (h1,500, N1, N2);

[M, Mt]=MATRPRIZP (h2,500, N1, N2);

Находим математическое ожидание и дисперсию для 2-х сигналов:

VMf=mean(Mf);

VMf =

0.7424 0.0651 0.0439 0.0353 0.0353 0.0289 0.0200 0.0135 0.0093 0.0054

VMs=mean(Mt);

VMs =

0.9563 0.0424 0.0006 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

VSf=std(Mf);

VSf =

0.0676 0.0144 0.0119 0.0103 0.0131 0.0107 0.0056 0.0030 0.0018 0.0016

VSs=std(Mt);

VSs =

0.0234 0.0232 0.0003 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000

npr=10;

for i=1:npr

r(i)=abs (VMf(i) – VMs(i))/(VSf(i)+VSs(i));

end;

[max_r, ind]=max(r);

Расстояние между признаками r=

2.3638 0.67807 3.5322 3.2243 2.3307 2.9455 4.0058 4.756 4.3383 3.2031

Максимальное расстояние: max_r= 4.756;

Получили наиболее информативный признак под номером 8. Следовательно, нормированное значение мощности в диапазоне 364 – 415 Гц.

ind=8;

x1=Mt(:, ind);

x1=sort(x1);

n1=length(x1);

xmin1=x1 (1);

xmax1=x1 (n1);

Mx1=mean(x1);

Sx1=std(x1);

xl1=Mx1–3*Sx1;

xr1=Mx1+3*Sx1;

xft1=linspace (xl1, xr1,1000);

ft1=[normpdf (xft1, Mx1, Sx1)];

k1=round (n1^0.5);

d1=(xmax1-xmin1)/k1;

x2=Mf(:, ind);

x2=sort(x2);

n2=length(x2);

xmin2=x2 (1);

xmax2=x2 (n2);

Mx2=mean(x2);

Sx2=std(x2);

xl2=Mx2–3*Sx2;

xr2=Mx2+3*Sx2;

xft2=linspace (xl2, xr2,1000);

ft2=[normpdf (xft2, Mx2, Sx2)];

k2=round (n2^0.5);

d2=(xmax2-xmin2)/k2;

plot (xft1, ft1.*d1,'b', xft2, ft2.*d2,'r');

chi=(2*Sx1*Sx2*log (Sx2/Sx1))+Mx1^2-Mx2^2;

Zn=2*(Mx1-Mx2);

h=chi/Zn

Получили порог принятия решения:

h = 0.0063

Построим график плотности распределения вероятности:

Рисунок 19 – Совмещенные графики плотностей распределения вероятностей сигналов гусеничной техники и фона

Решающее правило: если значения признака будет меньше порога h, то принимаем решение, что это полезный сигнал, если же значения признака больше порога h это будет соответствовать отсутствию сигнала (фону).

Вывод: в данной части курсовой работы были получены матрицы признаков сигнала гусеничной техники и фонового сигналов. Были найдены значение и номер наиболее информативного признака. Но по этому признаку нельзя построить систему классификации, т. к. будет слишком велика ошибка. Поэтому систему классификации целесообразно строить по нескольким признакам.

Также было получено значение порога принятия решения для системы классификации и сформулировано решающее правило.

4. Обучение нейронной сети.

4.1 Общие сведения о нейронных сетях

Искусственные НС представляет собой модели, в основе которых лежат современные представления о строении мозга человека и происходящих в нем процессах обработки информации. ИНС уже нашли широкое применение в задачах: сжатия информации, оптимизации, распознавание образов, построение экспертных систем, обработки сигналов и изображений и т.д.

Связь между биологическим и искусственным нейронами

Рисунок 20 – Структура биологического нейрона

Нервная система человека состоит из огромного количества связанных между собой нейронов, порядка 1011; количество связей исчисляется числом 1015.

Представим схематично пару биологических нейронов (рисунок 20).Нейрон имеет несколько входных отростков – дендриты, и один выходной – аксон. Дендриты принимают информацию от других нейронов, аксон – передает. Область соединения аксона с дендритом (область контакта) называется синапсом. Сигналы, принятые синапсами, подводятся к телу нейрона, где они суммируются. При этом, одна часть входных сигналов являются возбуждающими, а другая – тормозящими.

Когда входное воздействие превысит некоторый порог, нейрон переходит в активное состояние и посылает по аксону сигнал другим нейронам.

И скусственный нейрон – это математическая модель биологического нейрона (Рисунок 21). Обозначим входной сигнал через х, а множество входных сигналов через вектор X = {х1, х2, …, хN}. Выходной сигнал нейрона будем обозначать через y.

Изобразим функциональную схему нейрона.

Рисунок 21 – Искусственный нейрон

Для обозначения возбуждающего или тормозящего воздействия входа, введем коэффициенты w1, w1, …, wN – на каждый вход, то есть вектор

W = {w1, w1, …, wN}, w0 величина порога. Взвешенные на векторе W входные воздействия Х перемножаются с соответствующим коэффициентом w, суммируются и формируется сигнал g:

Выходной сигнал является некоторой функцией от g

,

где F – функция активации. Она может быть различного вида:

  1. ступенчатой пороговой

или

В общем случае:

2) линейной, которая равносильна отсутствию порогового элемента вообще

F(g) = g

3) кусочно-линейной, получаемая из линейной путем ограничения диапазона её изменения в пределах , то есть

4) сигмоидальной

5) многопороговой

6) гиперболический тангенс

F(g) = tanh(g)

Чаще всего входные значения преобразуются к диапазону X [0, 1]. При wi = 1 (i = 1, 2,…, N) нейрон является мажоритарным элементом. Порог в этом случае принимает значение w0 = N/2.

Еще один вариант условного изображения искусственного нейрона приведен на рисунке 22

Рисунок 22 – Условное обозначение искусственного нейрона

С геометрической точки зрения, нейрон при линейной функции активации описывает уравнение линии, если на входе одно значение x1

или плоскости, когда на входе вектор значений Х

Структура (архитектура, топология) нейронных сетей

Существует множество способов организации ИНС, в зависимости от: числа слоев, формы и направления связей.

Изобразим пример организации нейронных сетей (рисунок 23).

Однослойная структура Двухслойная структура с обратными связями с обратными связями

Двухслойная структура Трехслойная структура с прямыми связями с прямыми связями

Рисунок 23 – Примеры структур нейронных сетей

На рисунке 24 изображена трехслойная НС с прямыми связями. Слой нейронов, непосредственно принимающий информацию из внешней среды, называется входным слоем, а слой, передающий информацию во внешнюю среду – выходным. Любой слой, лежащий между ними и не имеющий контакта с внешней средой, называется промежуточным (скрытным) слоем. Слоев может быть и больше. В многослойных сетях, как правило, нейроны одного слоя имеют функцию активации одного типа.

Рисунок 24 – Трехслойная нейронная сеть

При конструировании сети в качестве исходных данных выступают:

– размерность вектора входного сигнала, то есть количество входов;

– размерность вектора выходного сигнала. Число нейронов в выходном слое, как правило, равно числу классов;

– формулировка решаемой задачи;

  • точность решения задачи.

Например, при решении задачи обнаружения полезного сигнала НС может иметь один или два выхода.

Создание или синтез НС – это задача, которая в настоящее время теоретически не решена. Она носит частный характер.

Обучение нейронных сетей

Одним из самых замечательных свойств нейронных сетей является их способность обучаться. Несмотря на то, что процесс обучения НС отличается от обучения человека в привычном нам смысле, в конце такого обучения достигаются похожие результаты. Цель обучения НС заключается в её настройке на заданное поведение.

Наиболее распространенным подходом в обучении нейронных сетей является коннекционизм. Он предусматривает обучение сети путем настройки значений весовых коэффициентов wij, соответствующих различным связям между нейронами. Матрица W весовых коэффициентов wij сети называется синаптической картой. Здесь индекс i – это порядковый номер нейрона, из которого исходит связь, то есть предыдущего слоя, а j – номер нейрона последующего слоя.

Существует два вида обучения НС: обучение с учителем и обучение без учителя.

Обучение с учителем заключается в предъявлении сети последовательности обучаемых пар (примеров) (Хi, Hi), i = 1, 2, …, m образов, которая называется обучающей последовательностью. При этом для каждого входного образа Хi вычисляется реакция сети Yi и сравнивается с соответствующим целевым образом Hi. Полученное рассогласование используется алгоритмом обучения для корректировки синаптической карты таким образом, чтобы уменьшить ошибку рассогласования. Такая адаптация производится путем циклического предъявления обучающей выборки до тех пор, пока ошибка рассогласования не достигнет достаточно низкого уровня.

Хотя процесс обучения с учителем понятен и широко используется во многих приложениях нейронных сетей, он всё же не полностью соответствует реальным процессам, происходящим в мозге человека в процессе обучения. При обучении наш мозг не использует какие-либо образы, а сам осуществляет обобщение поступающей извне информации.

В случае обучения без учителя обучающая последовательность состоит лишь из входных образов Хi. Алгоритм обучения настраивает веса так, чтобы близким входным векторам соответствовали одинаковые выходные векторы, то есть фактически осуществляет разбиение пространства входных образов на классы. При этом до обучения невозможно предсказать, какие именно выходные образы будут соответствовать классам входных образов. Установить такое соответствие и дать ему интерпретацию можно лишь после обучения.

Обучение НС можно рассматривать как непрерывный или как дискретный процесс. В соответствии с этим алгоритмы обучения могут быть описаны либо дифференциальными уравнениями, либо конечно-разностными. В первом случае НС реализуется на аналоговой, во втором – на цифровых элементах. Мы будем говорить только о конечно-разностных алгоритмах.

Фактически НС представляет собой специализированный параллельный процессор или программу, эмулирующую нейронную сеть на последовательной ЭВМ.

Большинство алгоритмов обучения (АО) НС выросло из концепции Хэбба. Он предложил простой алгоритм без учителя, в котором значение веса wij, соответствующее связи между i-м и j-м нейронами, возрастает, если оба нейрона находятся в возбужденном состоянии. Другими словами, в процессе обучения происходит коррекция связей между нейронами в соответствии со степенью корреляции их состояний. Это можно выразить в виде следующего конечно-разностного уравнения:

,

где wij(t + 1) и wij (t) – значения веса связей нейрона i с нейроном j до настройки (на шаге t+1) и после настройки (на шаге t) соответственно; vi (t)выход нейрона i и выход нейрона j на шаге t; vj (t) выход нейрона j на шаге t; α – параметр скорости обучения.

Стратегия обучения нейронных сетей

Наряду с алгоритмом обучения не менее важным является стратегия обучения сети.

Одним из подходов является последовательное обучение сети на серии примеров (Хi, Hi) i = 1, 2, …, m, составляющих обучающую выборку. При этом сеть обучают правильно реагировать сначала на первый образ Х1, затем на второй Х2 и т.д. Однако, в данной стратегии возникает опасность утраты сетью ранее приобретенных навыков при обучении каждому следующему примеру, то есть сеть может «забыть» ранее предъявленные примеры. Чтобы этого не происходило, надо сеть обучать сразу всем примерам обучающей выборки.

Х 1 ={Х11,…, Х1N} можно обучать 100 ц 1

Х2 = {Х21,…, Х2N} 100 ц 2 100 ц

……………………

Хm = {Хm1,…, ХmN} 100 ц 3

Так как решение задачи обучения сопряжено с большими сложностями, альтернативой является минимизация целевой функции вида:

,

где i – параметры, определяющие требования к качеству обучения нейронной сети по каждому из примеров, такие, что λ1 + λ2 + … + λm = 1.

Практическая часть.

Сформируем обучающее множество:

P_o=cat (1, Mt, Mf);

P_o=P_o';

Зададим структуру нейронной сети для задачи обнаружения:

net = newff (minmax(P_o), [npr 2], {'logsig', 'logsig'}, 'trainlm', 'learngdm');

net.trainParam.epochs = 100;% заданное количество циклов обучения

net.trainParam.show = 5;% количество циклов для показа промежуточных результатов;

net.trainParam.min_grad = 0;% целевое значение градиента

net.trainParam.max_fail = 5;% максимально допустимая кратность превышения ошибки проверочной выборки по сравнению с достигнутым минимальным значением;

net.trainParam.searchFcn = 'srchcha';% имя используемого одномерного алгоритма оптимизации

net.trainParam.goal = 0;% целевая ошибка обучения

Функция newff предназначена для создания «классической» многослойной нейронной сети с обучением по методу обратного распространения ошибки. Данная функция содержит несколько аргументов. Первый аргумент функции – это матрица минимальных и максимальных значений обучающего множества Р_о, которая определяется с помощью выражения minmax (P_o).

Вторые аргументы функции, задаются в квадратных скобках и определяют количество и размер слоев. Выражение [npr 2] означает, что нейронная сеть имеет 2 слоя. В первом слое – npr=10 нейронов, а во втором – 2. Количество нейронов в первом слое определяется размерностью входной матрицы признаков. В зависимости от количества признаков в первом слое может быть: 5, 7, 12 нейронов. Размерность второго слоя (выходной слой) определяется решаемой задачей. В задачах обнаружения полезного сигнала на фоне микросейсма, классификации по первому и второму классам, на выходе нейронной сети задается 2 нейрона.

Третьи аргументы функции определяют вид функции активации в каждом слое. Выражение {'logsig', 'logsig'} означает, что в каждом слое используется сигмоидально-логистическая функция активации , область значений которой – (0, 1).

Четвертый аргумент задает вид функции обучения нейронной сети. В примере задана функция обучения, использующая алгоритм оптимизации Левенберга-Марквардта – 'trainlm'.

Первые половина векторов матрицы Т инициализируются значениями {1, 0}, а последующие – {0, 1}.

net=newff (minmax(P_o), [10 2], {'logsig', 'logsig'}, 'trainlm', 'learngdm');

net.trainParam.epochs = 1000;

net.trainParam.show = 5;

net.trainParam.min_grad = 0;

net.trainParam.max_fail = 5;

net.trainParam.searchFcn = 'srchcha';

net.trainParam.goal = 0;

Программа инициализации желаемых выходов нейронной сети Т:

n1=length (Mt(:, 1));

n2=length (Mf(:, 1));

T1=zeros (2, n1);

T2=zeros (2, n2);

T1 (1,:)=1;

T2 (2,:)=1;

T=cat (2, T1, T2);

Обучение нейросети:

net = train (net, P_o, T);

Рисунок 25 – График обучения нейронной сети.

Произведем контроль нейросети:

P_k=[Mt; Mf];

P_k=P_k';

Y_k=sim (net, P_k);

Команда sim передает данные из контрольного множества P_k на вход нейронной сети net, при этом результаты записываются в матрицу выходов Y_k. Количество строк в матрицах P_k и Y_k совпадает.

Pb=sum (round(Y_k (1,1:100)))/100

Оценка вероятности правильного обнаружения гусеничной техники Pb=1 alpha = sum (round(Y_k (1,110:157)))/110

Оценка вероятности ложной тревоги alpha =0

Определяем среднеквадратическую ошибку контроля с помощью желаемых и реальных выходов нейронной сети Еk.

[Ek] = T-Y_k;

sqe_k = mse(Ek)

Величина среднеквадратической ошибки контроля составляет:

sqe_k = 2.5919e-026

Протестируем работу нейросети. Для этого сформируем матрицу признаков тестового сигнала:

h3=tr_t50-mean (tr_t50);

Mh1=MATRPRIZP (h3,500, N1, N2);

Mh1=Mh1 (1:50,:);

P_t=[Mh1; Mt];

P_t=P_t';

Y_t=sim (net, P_t);

Pb=sum (round(Y_t (1,1:100)))/100

Оценка вероятности правильного обнаружения гусеничной техники Pb=1

Находим разницу желаемых и реальных выходов нейронной сети Е и определяем среднеквадратическую ошибку тестирования.

[Ek] = T-Y_t;

sqe_t = mse(Ek)

Величина среднеквадратической ошибки тестирования составляет:

sqe_t = 3.185e-025

Вывод: в данном разделе мы построили модель обнаружителя сейсмических сигналов на нейронной сети с обучением по методу обратного распространения ошибки. Задача обнаружения решается с не большими погрешностями, следовательно признаки подходят для обнаружения.

Данную двухслойную нейронную сеть можно применить в построении системы обнаружения объектов.

Заключение

Целью данной курсовой работы было изучение методов обработки информации и применение их для решения задач обнаружения объектов.

В ходе проделанной работы, которая выполнялась в четыре этапа, были получены следующие результаты:

1) Были построены гистограммы выборочных плотностей вероятности амплитуд сигналов, как случайных величин.

Оценены параметры распределения: математическое ожидание, дисперсию, среднеквадратическое отклонение.

Сделали предположение о законе распределения амплитуды и проверили гипотезу по критериям Колмогорова-Смирнова и Пирсона на уровне значимости 0,05. По критерию Колмогорова-Смирнова распределение подобрано, верно. По критерию Пирсона распределение подобрано верно только для фонового сигнала. Для него приняли гипотезу о нормальном распределении.

Приняли сигналы за реализации случайных функций и построили для них корреляционные функции. По корреляционным функциям определили, что сигналы имеют случайный колебательный характер.

2) Сформировали обучающее и контрольное множества данных (для обучения и контроля нейронной сети).

3) Для обучающей матрицы оценили параметры распределения признаков: математическое ожидание, дисперсию, среднее квадратическое отклонение. По каждому признаку обучающей матрицы заданных классов вычислили расстояние и выбрали признак с максимальной разностью. Вычислили порог принятия решения и построили на одном графике кривые плотности распределения вероятности. Сформулировали решающее правило.

4) Обучили двухслойную нейронную сеть на решение задачи классификации. Оценили вероятности правильного обнаружения и ложной тревоги. Те же показатели оценили по тестовым сигналам.

Список используемой литературы

  1. Лекции по теории обработки информации в СБЛ. Лектор: Чистова Г.К.

  2. Чистова Г.К. «Основы обработки и обнаружения случайных сигналов»

  3. Вентцель Е.С. «Теория вероятности и математическая статистика»

Характеристики

Тип файла
Документ
Размер
11,78 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6958
Авторов
на СтудИзбе
264
Средний доход
с одного платного файла
Обучение Подробнее