47454 (608263), страница 3

Файл №608263 47454 (Комп’ютерний засіб вимірювання тиску і температури у кліматичній камері) 3 страница47454 (608263) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Спектрометричні методи можна поділити на пасивні та активні. Пасивні методи засновані на визначенні різних параметрів спектру випромінювання плазми, при якому процес виміру не впливає на величину, що вимірюється.

При використанні активних методів плазма облучається зовнішнім электромагнітним випромінюванням та її температура визначається по абсорбції, розсіюванню або швидкості розповсюдження зовнішнього випромінювання в середовищі що досліджується. Впливом зовнішнього випромінювання не завжди можна зневажити.

Плазма, полягати в основному з молекул, атомів, іонів та вільних электронів, характеризується рядом температур: молекулярною, атомною, іонною, електронною, температурою збудження та ін. Перші три температури тісно зв'язані та характеризують температуру газу.

Випромінювання плазми складається здебільшого з ліній, та лише дуже малу частину складає безперервний спектр; тому пряма пірометрія для виміру температури плазми не може бути застосована. Вирішити, чи є зміряна температура газової або електронною, можна тільки, якщо відомий механізм випромінювання на даній довжині хвилі l та яким часткам - тяжким чи легким - належить випромінювання.

Найбільш розповсюджений пасивний метод визначення температури плазми заснований на вимірі інтенсивності молекулярних, атомних або іонних спектральних ліній, для яких відомі теоретичні залежності між інтенсивністю спектральних ліній та температурою.

В теперішній час все більшого розповсюдження набувають інтегральні первинні вимірювальні перетворювачі температури, які як правило використовуються для діапазону температур від - 800 до +2500 С.

Ці перетворювачі виготовляються такими провідними світовими виробниками як Analog Devices, Motorola, Intersil (Harris), та інші. Вихідним сигналом таких перетворювачів є напруга, яка лінійно залежить від вимірюваної температури, або імпульсний сигнал, інформативним параметром якого є частота або шпаруватість імпульсів.

Для контролю температури віддалених об’єктів доцільно використовувати термоперетворювачі з імпульсним вихідним сигналом. Це зумовлене наступними причинами:

аналоговий вихідний сигнал термоперетворювача для передачі на великі відстані необхідно перетворювати в цифровий код, тому як цифровий сигнал має набагато більшу завадостійкість, ніж аналоговий;

цифровий сигнал зручно перетворювати у сигнал інтерфейсу RS-485 або RS-422, які призначені для передачі даних на великі відстані;

інтегральні напівпровідникові термоперетворювачі як правило виконуються у невеликих за розмірами корпусами і легко встановлюються на об’єкті;

інтегральні напівпровідникові термоперетворювачі мають мале енергоспоживання, що дозволяє використовувати їх локальне акумуляторне живлення.


2. Розробка структурної схеми комп’ютерного засобу вимірювання тиску і температури у кліматичній камері

На рис.2.1 наведено структурну схему комп’ютерного засобу вимірювання тиску і температури у кліматичній камері.

Рисунок 2.1 - Структурна схема комп’ютерного засобу вимірювання тиску і температури у кліматичній камері

Принцип дії системи, яка розроблюється у курсовому проекті, полягає у наступному.

Первинний вимірювальний перетворювач температури або тиску перетворює температуру або тиск, у шпаруватість вихідних імпульсів, тобто в даному випадку, шпаруватість вихідних імпульсів перетворювача є функцією температури або тиску.

Сучасні напівпровідникові перетворювачі температури виконуються на основі КМОП (англійська абревіатура CMOS) технології, що забезпечує ультранизьке споживання пристроїв. Внаслідок того, що відстань між об’єктом та комп’ютером, згідно умов технічного завдання, складає не менше 1500 м, недоцільно використовувати загальну мережу живлення для всіх термоперетворювачів. Тому в подальшому будемо проектувати систему виходячи з того, що перетворювачі живляться від локального джерела живлення, яке знаходиться у безпосередній близькості до об’єкта, або від акумуляторної батареї.

Згідно умов технічного завдання, для передачі даних на велику відстань необхідно використовувати інтерфейс RS-485, який спеціально для цього призначений. Згідно специфікації цього інтерфейсу, він має негативну логіку, формат передачі даних - вісім або сім біт даних, один стартовий біт, два стопових біта, біт парності. Сигнали передаються у вигляді струму по двопровідній вітій парі з екраном, відстань передачі даних - до 2000 м. Для перетворення CMOS - рівнів в сигнали RS-485, використовується спеціалізований перетворювач, як це наведено на структурній схемі.

Для перетворення симетричного вихідного сигналу мультиплексора у несиметричний сигнал CMOS - рівнів, який необхідний для роботи мікроконтролера, використовується відповідний перетворювач, як вказано на структурній схемі системи. Вихідний сигнал перетворювача подається на вхід мікроконтролера, який вимірює шпаруватість вихідних імпульсів первинного перетворювача температури і розраховує температуру згідно рівняння перетворення використовуємого датчика. Окрім того мікроконтролер здійснює керування диференційним мультиплексором, тобто формує код каналу, шпаруватість сигналу якого потрібно виміряти. Керування мікроконтролером здійснюється ПЕОМ у відповідності з програмою роботи системи через послідовний порт. Для нормальної роботи послідовного порта необхідно, щоб рівень логічної одиниці бів - 12 В, рівень логічного нуля +12 В, тобто відповідно специфікації інтерфейсу RS-232. Для перетворення CMOS - рівнів на виході мікроконтролера в рівні RS-232 використовується відповідний перетворювач, як це наведено на структурній схемі.


3. Розробка електричної принципової схеми комп’ютерного засобу вимірювання тиску і температури у кліматичній камері

Електрична принципова схема розробленого пристрою наведена у графічній частині курсового проекту. Пристрій розрахований на підключення двох перетворювачів, але потенційно дозволяє обробляти інформацію від восьми різних первинних вимірювальних перетворювачів без суттєвого ускладнення схеми. У якості первинного вимірювального перетворювача температури (DA1-DA8) обрано перетворювач фірми Analog Devices TMP04. Цей перетворювач має наступні технічні характеристики:

напруга живлення - 4.5 - 7 В;

трьохвивідний корпус ТО-92;

точність первинного перетворення +/ - 1.50 С;

CMOS/TTL вихідні рівні;

діапазон температур: - 40 - +150 0 С;

частота вихідного сигналу 35 Гц;

інформативний параметр вихідного сигналу - шпаруватість імпульсів;

У якості перетворювача CMOS - рівнів в сигнали інтерфейсу RS-485 обрано мікросхему ADM488 фірми Analog Devices (DD1-DD8).

Ця мікросхема уявляє собою драйвер та ресивер сигналів RS-485, тобто драйвер перетворює сигнали TTL або CMOS рівнів в формат RS-485, а ресивер перетворює сигнали RS-485 в TTL або CMOS. Основні характеристики цієї мікросхеми наступні:

напруга живлення - 4.5 - 7 В;

вісьмививідний корпус DIP або SOIC

відстань передачі даних - до 2000 м

діапазон робочих температур - 25 - +85 0 С;

струм споживання - 15 мА.

У даній системі для перетворення вихідних сигналів первинних вимірювальних перетворювачів температури використовуються тільки драйвери.

Живлення первинного вимірювального перетворювача температури і драйвера RS-485 здійснюється від локального джерела живлення, напруга якого подається через той самий роз’єм, що і вимірювальні сигнали.

Сигнали інтерфейсу RS-485 через роз’єми і віту пару поступають на вісьмиканальний аналоговий мультиплексор з диференційними входами і виходами. У якості мультиплексора обрано мікросхему ADG707 фірми Analog Devices (DA9). Основні параметри цієї мікросхеми наступні:

кількість каналів - 8;

напруга живлення - однополярна або двополярна від 3 до 18 В;

диференційні входи;

диференційні виходи;

опір у відкритому стані - 0.5 Ом

Мультиплексор має вхід вибірки. Він знаходиться в активному стані, коли на цому вході присутній рівень логічної одиниці. У нашому випадку мультиплексор постійно знаходиться в активному режимі, тому як на його вхід через резистор R9, від джерела живлення, постійно подається рівень логічної одиниці.

Вихідний сигнал мультиплексора поступає на ресивер, реалізований на мікросхемі ADM488, який здійснює перетворення сигналів RS-485 в CMOS.

Сигнали з виходу ресивера поступає на вхід мікроконтролера, з виходу якого, через перетворювач рівню, в послідовний порт ПЕОМ.

Живлення мультиплексора, ресивера, перетворювача, мікроконтролера здійснюється від послідовного порта ПЕОМ.

Для розробки приладу обираємо термокомпенсований тензоперетворювач тиску фірми Motorola MPX1986. Вихідним сигналом цього сенсора є послідовність імпульсів, шпаруватість яких прямо пропорційна тиску. Його основні технічні характеристики:

напруга живлення - 4.5 - 7 В;

точність первинного перетворення +/ - 1.5 кПа;

CMOS/TTL вихідні рівні;

діапазон температур: 0 - 1000 кПа;

частота вихідного сигналу 35 Гц;

інформативний параметр вихідного сигналу - шпаруватість імпульсів;

Живлення мікроконтролера AT90S2313, перетворювача рівнів ADM3222, мультиплексора складає 5 В. Згідно умов технічного завдання, живлення повинно здійснюватись від послідовного порта ПЕОМ.

Для живлення використовуються сигнали послідовного порта DTR та RTS, які згідно специфікації RS-232 мають навантажувальну здатність 15 мА. Ці сигнали програмно встановлюються в рівень логічного нуля, тобто напруга на цих виводах порта складає 12 В. Якщо їх з’єднати через діоди, як наведено на рис.5.1, та сумарна навантажувальна здатність джерела живлення підвищиться до 30 мА.

Для живлення мікроконтролера, перетворювача рівнів та мультиплексора необхідно використовувати стабілізовану напругу 5 В. Тому необхідно використати інтегральний стабілізатор напруги, який знизить напругу логічного нуля RS232 до рівню 5В і забезпечить стабілізоване живлення.

Для цієї мети можна використати інтегральний стабілізатор напруги фірми MOTOROLA MC7805LC. Цей інтегральний стабілізатор має наступні електричні характеристики:

вхідна напруга від 7.2 В до 35 В

вихідна напруга 5 В

максимальний струм навантаження - 1.5 А

трьохвивідний корпус.

Вхідний конденсатор цієї мікросхеми (ри.5.1) необхідний для того, щоб виключити можливість самозбудження. До виходу мікросхеми необхідно паралельно підключити два конденсатори - електролітичний та керамічний. Електролітичний - для згладжування низькочастотних пульсація, керамічний - високочастотних.


4. Електричні розрахунки

4.1 Електричний розрахунок джерела живлення

Схема електрична джерела живлення, від якого живиться мікроконтролер AT90S2313, мультиплексор ADG707, перетворювач рівнів ADM3202 наведена на рис.4.1

Рисунок 4.1 - Джерело живлення

Діоди VD1 та VD2 призначені для взаємної розв’язки сигналів DTR та RTS та сумування струмів цих сигналів. Згідно специфікації RS-232, навантажувальна здатність сигналів DTR і RTS складає 15 мА, а максимальне значення напруги рівню логічного нуля - 15 В. Відповідно розраховуємо максимальний вхідний струм інтегрального стабілізатора напруги DA1 MC7805LC:

(мА), (4.1)

де -максимальний струм сигналу DTR;

- максимальний струм сигналу RTS.

Максимальне зворотнє падіння напруги на діодах може виникнути в тому випадку, коли сигнали DTR і RTS знаходяться в рівні логічної одиниці і дорівнює 15 В. Максимальний струм через ці діоди не перевищує 15 мА. Виходячи з цього, обираємо діоди КД521А, у яких максимальна зворотна напруга 100 В і максимальний струм - 100 мА [8].

Падіння напруги на відкритому кремнієвому діоді складає 0.7 В. Відповідно напруга на вході інтегрального стабілізатора напруги:

(В) (4.2)

де - напруга рівню логічного нуля RS-232; - падіння напруги на відкритому діоді. Падіння напруги на мікросхемі MC7805LC дорівнює:

(В) (4.3)

де - вихідна напруга мікросхеми MC7805LC. Потужність, яка розсіюється на мікросхемі MC7805LC дорівнює:

Характеристики

Тип файла
Документ
Размер
1,21 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7028
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее