47074 (608066), страница 2
Текст из файла (страница 2)
При частотном мультиплексировании полоса пропускания физического канала К делится на ряд узких частотных полос. Процедуры использования частотного мультиплексирования в коаксиальном кабеле, оптическом кабеле, либо радиоканале характеризуются множественным доступом с разделением частоты.
Частотное и временное мультиплексирование могут применяться одновременно. В этом случае, в физическом канале выделяются частотные полосы. В любой из этих полос каждой системе для передачи данных предоставляются определенные интервалы времени [5].
В результате мультиплексирования в одном физическом канале создается группа логических каналов.
Трансляция протоколов.
Трансляция обеспечивает согласование двух протоколов путем преобразования (трансляции) сообщений, поступающих от одной сети, в формат другой сети. Транслирующий элемент в качестве которого могут выступать, например, программный или аппаратный шлюз, мост, коммутатор или маршрутизатор, размещается между взаимодействующими сетями и служит посредником в их «диалоге».
В зависимости от типа транслируемых протоколов процедура трансляции может иметь разную степень сложности. Так, преобразование протокола Ethernet в протокол Token Ring сводится к нескольким несложным действиям, главным образом благодаря тому, что в обоих протоколах используется единая адресация узлов. А вот трансляция протоколов сетевого уровня IP и IPX представляет собой гораздо более сложный, интеллектуальный процесс, включающий не только преобразование форматов сообщений, но и отображение адресов сетей и узлов, различным образом трактуемых в этих протоколах [7].
Следует отметить, что сложность трансляции зависит не от того, насколько высокому уровню соответствуют транслируемые протоколы, а от того, насколько сильно они различаются. Так, например, весьма сложной представляется трансляция протоколов канального уровня ATM-Ethernet, именно поэтому для их согласования используется не трансляция, а другие подходы.
К частному случаю трансляции протоколов может быть отнесен широко применяемый подход с использованием общего протокола сетевого уровня (IP или IPX). Заголовок сетевого уровня несет информацию, которая, дополняя информацию заголовка канального уровня, позволяет выполнять преобразование протоколов канального уровня. Процедура трансляции в данном случае выполняется маршрутизаторами, причем помимо информации, содержащейся в заголовках транслируемых кадров, то есть в заголовках канального уровня, дополнительно используется информация более высокого уровня, извлекаемая из заголовков сетевого уровня.
Трансляцию протоколов могут выполнять различные устройства – мосты, коммутаторы, маршрутизаторы, программные и аппаратные шлюзы. Часто транслятор протоколов называют шлюзом в широком смысле, независимо от того, какие протоколы он транслирует. В этом случае подчеркивается тот факт, что трансляция осуществляется выделенным устройством, соединяющим две разнородные сети[8].
Инкапсуляция (туннелирование) протоколов.
Инкапсуляция (encapsulation) или туннелирование (tunneling) – это еще один метод решения задачи согласования сетей, который однако применим только для согласования транспортных протоколов и только при определенных ограничениях. Инкапсуляция может быть использована, когда две сети с одной транспортной технологией необходимо соединить через сеть, использующую другую транспортную технологию. Необходимо обеспечить только взаимодействие узлов двух сетей NetBIOS, а взаимодействие между узлами NetBIOS и узлами сети TCP/IP не предусматривается. То есть, при инкапсуляции промежуточная сеть используется только как транзитная транспортная система.
Метод инкапсуляции заключается в том, что пограничные маршрутизаторы, которые подключают объединяемые сети к транзитной, упаковывают пакеты транспортного протокола объединяемых сетей в пакеты транспортного протокола транзитной сети. В данном случае пакеты NetBIOS упаковываются в пакеты TCP, как если бы пакеты NetBIOS представляли собой сообщения протокола прикладного уровня. Затем пакеты NetBIOS переносятся по сети TCP/IP до другого пограничного маршрутизатора. Второй пограничный маршрутизатор выполняет обратную операцию – он извлекает пакеты NetBIOS из пакетов TCP и отправляет их по сети назначения адресату.
Для реализации метода инкапсуляции пограничные маршрутизаторы должны быть соответствующим образом сконфигурированы. Они должны знать, во-первых, IP‑адреса друг друга, во-вторых – NetBIOS‑имена узлов объединяемых сетей. Имея такую информацию, они могут принять решение о том, какие NetBIOS‑пакеты нужно переправить через транзитную сеть, какой IP‑адрес указать в пакете, передаваемом через транзитную сеть и каким образом доставить NetBIOS‑пакет узлу назначения в конечной сети.
Инкапсуляция может быть использована для транспортных протоколов любого уровня. Например, протокол сетевого уровня Х.25 может быть инкапсулирован в протокол транспортного уровня TCP, или же протокол сетевого уровня IP может быть инкапсулирован в протокол сетевого уровня Х.25. Для согласования сетей на сетевом уровне могут быть использованы многопротокольные и инкапсулирующие маршрутизаторы, а также программные и аппаратные шлюзы[9].
Обычно инкапсуляция приводит к более простым и быстрым решениям по сравнению с трансляцией, так как решает более частную задачу, не обеспечивая взаимодействия с узлами транзитной сети.
Сравнение трансляции и мультиплексирования.
Использование техники трансляции связано со следующими достоинствами:
Не требуется устанавливать дополнительное программное обеспечение на рабочих станциях.
Сохраняется привычная среда пользователей и приложений, транслятор полностью прозрачен для них.
Все проблемы межсетевого взаимодействия локализованы, следовательно, упрощается администрирование, поиск неисправностей, обеспечение безопасности.
Недостатки согласования протоколов путем трансляции состоят в том, что:
Транслятор замедляет работу из-за относительно больших временных затрат на сложную процедуру трансляции, а также из-за ожидания запросов в очередях к единственному элементу, через который проходит весь межсетевой трафик.
Централизация обслуживания запросов к «чужой» сети снижает надежность. Однако можно предусмотреть резервирование – использовать несколько трансляторов.
При увеличении числа пользователей и интенсивности обращений к ресурсам другой сети резко снижается производительность – плохая масштабируемость [10].
Достоинства мультиплексирования по сравнению с трансляцией протоколов заключаются в следующем:
Запросы выполняются быстрее, за счет отсутствия очередей к единственному межсетевому устройству и использования более простой, чем трансляция, процедуры переключения на нужный протокол.
Более надежный способ – при отказе стека на одном из компьютеров доступ к ресурсам другой сети возможен посредством протоколов, установленных на других компьютерах.
Недостатки данного подхода.
Сложнее осуществляется администрирование и контроль доступа.
Высокая избыточность требует дополнительных ресурсов от рабочих станций, особенно если требуется установить несколько стеков для доступа к нескольким сетям [11].
Менее удобен для пользователей по сравнению с транслятором, так как требует навыков работы с транспортными протоколами «чужих» сетей.
1.3 Сетевое оборудование
Сетевое оборудование – устройства, необходимые для работы компьютерной сети, например: маршрутизатор, коммутатор и др. Обычно выделяют активное и пассивное сетевое оборудование.
Под активным подразумевается оборудование, за которым следует некоторая «интеллектуальная» особенность. То есть маршрутизатор, коммутатор (свитч) и т.д. являются активным сетевым оборудованием. Напротив – повторитель (репитер) и концентратор (хаб) не являются АСО, так как просто повторяют электрический сигнал для увеличения расстояния соединения или топологического разветвления и ничего «интеллектуального» собой не представляют. Но управляемые свитчи относятся к активному сетевому оборудованию, так как могут быть наделены некоей «интеллектуальной особенностью». Ниже приведен краткий обзор.
Маршрутизатор.
Маршрутизатор или рутер (от англ. Router) – сетевое устройство, на основании информации о топологии сети и определённых правил, принимающее решения о пересылке пакетов сетевого уровня (уровень 3 модели OSI) между различными сегментами сети.
Работает на более высоком уровне, нежели коммутатор и сетевой мост.
Принцип работы.
Обычно маршрутизатор использует адрес получателя, указанный в пакетах данных, и определяет по таблице маршрутизации путь, по которому следует передать данные. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.
Существуют и другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня. Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя, фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа, шифрование / дешифрование передаваемых данных и т.д.
Таблица маршрутизации содержит информацию, на основе которой маршрутизатор принимает решение о дальнейшей пересылке пакетов. Таблица состоит из некоторого числа записей – маршрутов, в каждой из которых содержится адрес сети получателя, адрес следующего узла, которому следует передавать пакеты и некоторый вес записи – метрика. Метрики записей в таблице играют роль в вычислении кратчайших маршрутов к различным получателям. В зависимости от модели маршрутизатора и используемых протоколов маршрутизации, в таблице может содержаться некоторая дополнительная служебная информация.
Таблица маршрутизации может составляться двумя способами.
Статическая маршрутизация – когда записи в таблице вводятся и изменяются вручную. Такой способ требует вмешательства администратора каждый раз, когда происходят изменения в топологии сети. С другой стороны, он является наиболее стабильным и требующим минимума аппаратных ресурсов маршрутизатора для обслуживания таблицы.
Динамическая маршрутизация – когда записи в таблице обновляются автоматически при помощи одного или нескольких протоколов маршрутизации – RIP, OSPF, EIGRP, IS-IS, BGP, и др. Кроме того, маршрутизатор строит таблицу оптимальных путей к сетям назначения на основе различных критериев – количества промежуточных узлов, пропускной способности каналов, задержки передачи данных и т.п. Критерии вычисления оптимальных маршрутов чаще всего зависят от протокола маршрутизации, а также задаются конфигурацией маршрутизатора. Такой способ построения таблицы позволяет автоматически держать таблицу маршрутизации в актуальном состоянии и вычислять оптимальные маршруты на основе текущей топологии сети. Однако динамическая маршрутизация оказывает дополнительную нагрузку на устройства, а высокая нестабильность сети может приводить к ситуациям, когда маршрутизаторы не успевают синхронизировать свои таблицы, что приводит к противоречивым сведениям о топологии сети в различных её частях и потере передаваемых данных. Зачастую для построения таблиц маршрутизации используют теорию графов.
Применение.
Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий и широковещательные домены, а также благодаря фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам, например для объединения локальных сетей Ethernet и WAN‑соединений, использующих протоколы xDSL, PPP, ATM, Frame relay и т.д. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана.
В качестве маршрутизатора может выступать как специализированное (аппаратное) устройство (характерный представитель Juniper), так и обычный компьютер, выполняющий функции маршрутизатора. Существует несколько пакетов программного обеспечения (в основном на основе ядра Linux) с помощью которого можно превратить ПК в высокопроизводительный и многофункциональный маршрутизатор, например GNU Zebra[12].
Сетевой коммутатор.
Сетевой коммутатор или свитч (жарг. от англ. switch – переключатель) – устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передает данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.
Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC‑адресам. Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы.
Принцип работы коммутатора.
Коммутатор хранит в памяти таблицу, в которой указывается соответствие MAC‑адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры и, определив MAC‑адрес хоста-отправителя, заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC‑адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC‑адрес хоста-получателя еще не известен, то кадр будет продублирован на все интерфейсы. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.
Режимы коммутации.
Существует три способа коммутации. Каждый из них – это комбинация таких параметров, как время ожидания и надежность передачи.















