46765 (607930), страница 2

Файл №607930 46765 (Алгоритмы поиска подстроки в строке) 2 страница46765 (607930) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Алгоритм Рабина и алгоритм последовательного поиска являются алгоритмами с наименьшими трудозатратами, поэтому они годятся для использования при решении некоторого класса задач. Однако эти алгоритмы не являются наиболее оптимальными (хотя бы потому, что иногда выполняют явно бесполезную работу, о чем было сказано выше), поэтому мы перейдём к следующему классу алгоритмов. Эти алгоритмы появились в результате тщательного исследования алгоритма последовательного поиска. Исследователи хотели найти способы более полно использовать информацию, полученную во время сканирования (алгоритм прямого поиска ее просто выбрасывает). Рассмотрим алгоритм Кнута – Морриса – Пратта.

1.3. Алгоритм Кнута - Морриса - Пратта (КМП).

Вначале рассмотрим некоторые вспомогательные утверждения. Для произвольного слова X рассмотрим все его начала, одновременно являющиеся его концами, и выберем из них самое длинное (не считая, конечно, самого слова X). Обозначим его n(X). Такая функция носит название префикс – функции [13].

Примеры.

n(aba)=a, n(n(aba))=n(a)=L;

n(abab)=ab, n(n(abab))=n(ab)=L;

n(ababa)=aba, n(n(ababa))=n(aba)=a, n(n(n(ababa)))=n(a)=L; n(abc)=L.

Докажем несколько используемых впоследствии фактов, а именно предложение (по [Шень,1995,с.165-166]):

(1) Последовательность слов n(X),n(n(X)),n(n(n(X))),... "обрывается" (на пустом слове L).

(2) Все слова n(X),n(n(X)),n(n(n(X))),...,L являются началами слова X.

(3) Любое слово, одновременно являющееся началом и концом слова X (кроме самого X), входит в последовательность n(X),n(n(X)),....,L.

Доказательство.

(1) Тривиально, т.к. каждое слово короче предыдущего.

(2) Каждое из них (по определению) является началом предыдущего. По той же причине все они являются концами слова X.

(3) Пусть слово Y является одновременно началом и концом X. Слово n(X) - самое длинное из таких слов, так что Y не длиннее n(X). Оба эти слова являются началами X, поэтому более короткое из них является началом более длинного: Y есть начало n(X). Аналогично, Y есть конец n(X). Рассуждая по индукции, можно предполагать, что утверждение задачи верно для всех слов короче X, в частности, для слова n(X). Так что слово Y, являющееся концом и началом n(X), либо равно n(X), либо входит в последовательность n(n(X)),n(n(n(X))),...,,L.

Предложение доказано.

Метод КМП использует предобработку искомой строки, а именно: на ее основе создается префикс-функция. При этом используется следующая идея: если префикс (он же суффикс) строки длинной i длиннее одного символа, то он одновременно и префикс подстроки длинной i-1 (Листинг 3). Таким образом, мы проверяем префикс предыдущей подстроки, если же тот не подходит, то префикс ее префикса, и т.д. Действуя так, находим наибольший искомый префикс. Следующий вопрос, на который стоит Error: Reference source not found ответить: почему время работы процедуры линейно, ведь в ней присутствует вложенный цикл? Ну, во-первых, присвоение префикс-функции происходит четко m раз, остальное время меняется переменная k. Так как в цикле while она уменьшается (P[k]

А

Листинг 3

сейчас мы переходим к самому алгоритму, ищущему подстроку в строке (Листинг 4).

Error: Reference source not found

Листинг 4

Доказать что эта программа работает за линейное время, можно точно так же, как и для префикс - функции. Стало быть, общее время работы программы есть O(n+m), т. е. линейное время.

Напоследок заметим, что алгоритм последовательного поиска и алгоритм КМП помимо нахождения самих строк считают, сколько символов совпало в процессе работы.

1.4. Алгоритм Бойера – Мура и некоторые его модификации.

1.4.1. Алгоритм Боейера – Мура.

Алгоритм Бойера-Мура, разработанный двумя учеными – Бойером (Robert S. Boyer) и Муром (Strother Moore), считается наиболее быстрым среди алгоритмов общего назначения, предназначенных для поиска подстроки в строке.

Простейший вариант алгоритма Бойера-Мура состоит из следующих шагов. На первом шаге мы строим таблицу смещений для искомого образца. Процесс построения таблицы будет описан ниже. Далее мы совмещаем начало строки и образца и начинаем проверку с последнего символа образца. Если последний символ образца и соответствующий ему при наложении символ строки не совпадают, образец сдвигается относительно строки на величину, полученную из таблицы смещений, и снова проводится сравнение, начиная с последнего символа образца. Если же символы совпадают, производится сравнение предпоследнего символа образца и т. д. Если все символы образца совпали с наложенными символами строки, значит мы нашли подстроку и поиск окончен. Если же какой-то (не последний) символ образца не совпадает с соответствующим символом строки, мы сдвигаем образец на один символ вправо и снова начинаем проверку с последнего символа. Весь алгоритм выполняется до тех пор, пока либо не будет найдено вхождение искомого образца, либо не будет достигнут конец строки.

Величина сдвига в случае несовпадения последнего символа вычисляется исходя из следующих соображений: сдвиг образца должен быть минимальным, таким, чтобы не пропустить вхождение образца в строке. Если данный символ строки встречается в образце, мы смещаем образец таким образом, чтобы символ строки совпал с самым правым вхождением этого символа в образце. Если же образец вообще не содержит этого символа, мы сдвигаем образец на величину, равную его длине, так что первый символ образца накладывается на следующий за проверявшимся символ строки.

Величина смещения для каждого символа образца зависит только от порядка символов в образце, поэтому смещения удобно вычислить заранее и хранить в виде одномерного массива, где каждому символу алфавита соответствует смещение относительно последнего символа образца. Поясним все вышесказанное на простом примере. Пусть у нас есть алфавит из пяти символов: a, b, c, d, e и мы хотим найти вхождение образца “abbad” в строке “abeccacbadbabbad”. Следующие схемы иллюстрируют все этапы выполнения алгоритма. Таблица смещений будет выглядеть так.

Начало поиска.

Последний символ образца не совпадает с наложенным символом строки. Сдвигаем образец вправо на 5 позиций:

Три символа образца совпали, а четвертый – нет. Сдвигаем образец вправо на одну позицию:

Последний символ снова не совпадает с символом строки. В соответствии с таблицей смещений сдвигаем образец на 2 позиции:

Еще раз сдвигаем образец на 2 позиции:



Теперь, в соответствии с таблицей, сдвигаем образец на одну позицию, и получаем искомое вхождение образца:

Реализуем указанный алгоритм на языке Pascal.

Прежде всего следует определить тип данных «таблица смещений». Для кодовой таблицы, состоящей из 256 символов, определение этого типа будет выглядеть так:

Type

TBMTable = Array [0..255] of Integer;

Далее приводится процедура, вычисляющая таблицу смещений для образца p (Листинг 5).

Error: Reference source not found

Листинг 5

Теперь напишем функцию, осуществляющую поиск (Листинг 6).

Параметр StartPos позволяет указать позицию в строке s, с которой следует начинать поиск. Это может быть полезно в том случае, если вы захотите найти все вхождения p в s. Для поиска с самого начала строки следует задать StartPos равным 1. Если результат поиска не равен нулю, то для того, чтобы найти следующее вхождение p в s, нужно задать StartPos равным значению «предыдущий результат плюс длина образца».

1.4.2. Модификации БМ.

Быстрый поиск (Классификация Thierry Lecroq [2]).

Сдвиг плохого символа, используемый в алгоритме Боуера - Мура, не очень эффективен для маленького алфавита, но, когда размер алфавита большой по сравнению с длиной образца, как это часто имеет место с

Error: Reference source not found

таблицей ASCII и при обычном поиске в текстовом редакторе, он становится чрезвычайно полезен. Использование в алгоритме только его одного может быть весьма эффективным.

После попытки совмещения x и y [i, i+m-1], длина сдвига - не менее 1. Таким образом, символ y [ i + m ] обязательно будет вовлечен в следующую попытку, а значит, может быть использован в текущей попытке для сдвига плохого символа. Модифицируем функцию плохого символа, чтобы принять в расчет последний символ х:

bc[ a ] = min { j | 0 j m и x[ m - 1 - j ] = a }, если a встречается в x,

bc[ a ] = m в противоположном случае.

Сравнения текста и образца могут производиться в любом порядке.

Т

Листинг 6

урбо БМ (Классификация Thierry Lecroq [2]).

Турбо - БМ является также является улучшением алгоритма Боуера - Мура. Мы будем запоминать сегмент текста, который сошелся с суффиксом образца во время прошлой попытки (и только, если произошел сдвиг хорошего суффикса).

Это даст нам два преимущества:

1. Возможность перескочить через этот сегмент

2. Возможность применения «турбо – сдвига»

«Турбо – сдвиг» может произойти, если мы обнаружим, что суффикс образца, который сходится с текстом, короче, чем тот, который был запомнен ранее.

Пусть u - запомненный сегмент, а v - cуффикс, совпавший во время текущей попытки, такой что uzv - суффикс x. Тогда av - суффикс x, два символа а и b встречаются на расстоянии p в тексте, и суффикс x длины |uzv| имеет период длины p, а значит не может перекрыть оба появления символов а и b в тексте. Наименьший возможный сдвиг имеет длину |u| - |v| ( его мы и называем «турбо – сдвигом» ).

1.5. Поиск подстрок с помощью конечного автомата.

1.5.1. Структура автомата.

По определению, конечный автомат представляет собой пятерку М = (Q, q0, A, , ), где:

Q — конечное множество состояний;

q0 Q — начальное состояние;

А Q — конечное множество допускающих состояний;

— конечный входной алфавит;

— функция Q х Q, называемая функцией переходов автомата.

Первоначально конечный автомат находится в состоянии q0. Затем он по очереди читает символы из входной строки. Находясь в состоянии q и читая символ а, автомат переходит в состояние (q,a). Если автомат находится в состоянии q A говорят, что он допускает прочитанную часть входной строки. Если q А, то прочитанная часть строки отвергнута.

С конечным состоянием М связана функция , называемая функцией конечного состояния, определяемая следующим образом: есть состояние, в которое придет автомат (из начального состояния), прочитав строку w. Автомат допускает строку w тогда и только тогда, когда А

Для каждого образца Р можно построить конечный автомат, ищущий этот образец в тексте. Первым шагом в построении автомата, соответствующего строке-образцу Р[1..m], является построение по Р вспомогательной суффикс-функциии (как в алгоритме КМП). Теперь определим конечный автомат, соответствующий образцу Р[1..m], следующим образом:

  • Его множество состояний Q = {0,1,..., m}. Начальное состояние q0 = 0. Единственное допускающее состояние m;

  • Функция переходов определена соотношением (q — состояние, — символ): (q,a) = (Pqa). (1)

Поясним это соотношение. Требуется сконструировать автомат таким образом, чтобы при его действии на строку Т соотношение

i) = i)

являлось инвариантом (тогда равенство i) = m будет равносильно тому, что Р входит в Т со сдвигом i — m, и автомат тем самым найдет все допустимые сдвиги). Однако в этом случае вычисление перехода по формуле (1) необходимо для поддержания истинности инварианта, что следует из теорем, приведенных ниже.[3]

Теорема. Пусть q = (х), где х — строка. Тогда для любого символа а имеет место (ха) = (Pqa).

Теорема. Пусть — функция конечного состояния автомата для поиска подстроки Р[1.. m]. Если Т[1.. n] — произвольный текст, то i) = i) для i=0,1,..., n. [14]

Из изложенного следует, что задача поиска подстроки состоит из двух частей:

построение автомата по образцу (определение функции переходов для заданного образца);

применение этого автомата для поиска вхождений образца в заданный текст.

1.5.2. Пример построения конечного автомата

Построим конечный автомат, допускающий строку ababaca. Поскольку длина образца m = 7 символов, то в автомате будет m + 1 = 8 состояний.

Найдем функцию переходов . В соответствии с определением (1), (q, a) =qа), где — префикс-функция, а — произвольный символ из алфавита , q — номер состояния. Таким образом, необходимо для каждого префикса Pq = P[0..q], q = 0 .. m образца Р и для всех символов а входного алфавита найти длину максимального префикса Р, который будет являться суффиксом строки Рqа. Длина этого префикса и будет значением функции переходов (q,a). Если а = P[q + 1] (очередной символ текста совпал со следующим символом образца), то Рqа = Рq+1 и (q, a) = q+1.

Такой случай соответствует успешным этапам поиска. Иначе, (q,a) q. Например, для префикса Р[0..5] = ababa и символа b максимальным суффиксом строки Р[0..5]b=ababab, который одновременно является префиксом Р, будет abab. Его длина равна 4, поэтому значение функции переходов (5, b) = 4.

Запишем построенную таким образом функцию переходов в виде таблицы (Табл. 1):

0

1

2

3

4

5

6

7

a

1

1

3

1

5

1

7

1

b

0

2

0

4

0

4

0

2

c

0

0

0

0

0

6

0

0

Строки соответствуют входным символам, столбцы — состояниям автомата. Ячейки, соответствующие успешным этапам поиска (входной символ совпадает со следующим символом образца), выделены серым цветом.

Построим по таблице граф переходов автомата (Рис. 1), распознающего образец ababaca. Находясь в состоянии q и прочитав очередной символ а, автомат переходит в состояние (q,a). Обратим внимание, что его остов помечен символами образца (эти переходы выделены жирными стрелками).

Рис. 1

Здесь 0 — исходное состояние, 7 — единственное допускающее состояние (зачернено). Если из вершины i в вершину j ведет стрелка, помеченная буквой а, то это означает, что (i,a) = j. Отметим, что переходы, для которых (i,a) = 0, на графе переходов для его упрощения не обозначены. Жирные стрелки, идущие слева направо, соответствуют успешным этапам поиска подстроки Р — следующий входной символ совпадает с очередным символом образца. Стрелки, идущие справа налево, соответствуют неудачам — следующий входной символ отличается от очередного символа образца.

Ниже приведен результат применения автомата к тексту Т = abababacaba. Под каждым символом Т[г] записано состояние автомата после прочтения этого символа (иными словами, значение i)) (Табл. 2).

Найдено одно вхождение образца (начиная с позиции 3). Найденный образец в тексте помечен серым цветом. Черным цветом помечено допускающее состояние автомата (состояние с номером 7).

Часть 2. Экспериментальный анализ алгоритмов.

2.1. Суть эксперимента.

Мы рассмотрели несколько алгоритмов, провели оценку их временной и емкостной сложности. Однако, как уже говорилось, данные критерии оценки не позволяют нам наверняка сказать, какой из алгоритмов будет быстрее работать. Поэтому, для дополнительной оценки проведем их экспериментальный анализ, т.е. измерим время, за которое алгоритм выполняет конкретно поставленную задачу.

Имеется несколько текстовых файлов, содержащих 10000 записей вида:
строка
подстрока (имеющаяся в данной строке)
место вхождения
длина подстроки

с разными максимальными длинами строк и подстрок.

Алфавитом является 66 русских заглавных и строчных букв.

Пусть это будут строки длиной не более 10, 100, 250 символов.

Проведем поиск подстрок в строках для каждого из алгоритмов и измерим время работы программы. При этом будем учитывать следующее:

  • Строки предварительно загружаем в оперативную память (в виде массива), причем время считывания в массив не учитывается. Предобработка (создание таблиц перехода) входит в общее время.

  • Каждый алгоритм запускается 5 раз, время выбирается наименьшее.

Стенд для эксперимента.

Процессор Intel Pentium IV 2,66Ггц

1024 Мб ОЗУ

Компилятор Borland Delphi Enterprise, version 6.0 (Build 6.163)

Фрагмент кода тестируемой программы приведем в листинге 7.

Error: Reference source not found

Понятно, что такой замер времени даст нам весьма расплывчатые результаты, так как напрямую зависит от характеристик и загрузки процессора. Поэтому во время проведения эксперимента, отключались все сторонние и фоновые приложения, которые не влияют на работу программы. При запуске одной и той же задачи мы можем получить разное время, поэтому совершается несколько запусков, из которых выбирается наилучший результат.

2.2. Результаты и анализ эксперимента.

Эксперимент проводился для четырех алгоритмов – представителей классов алгоритмов. Так как все алгоритмы ставились в одинаковые условия, то можно провести их сравнительный анализ. Заметим, что данный анализ применим только для данных параметров поиска, и при иных условиях может отличаться.

Результаты эксперимента занесем в таблицу (Табл. 3).

Алгоритм

Время выполнения

Длина ≤10

Длина ≤100

Длина ≤250

Послед. поиск

15

93

234

Алгоритм Рабина

(Хеш – сумма кодов)

15

63

93

КМП

5

30

50

БМ

31

31

32

Как и предполагалось, алгоритм Бойера – Мура справился с экспериментальной задачей быстрее остальных. Следует, однако, заметить, что его эффективность растет лишь с увеличением длины строки и, соответственно, длины образца. Так при длине строки меньшей или равной 10 символов, он показал себя хуже, чем последовательный поиск. Аналогичные результаты показывает и алгоритм КМП, как для коротких, так и для длинных слов. Его можно использовать как универсальный, когда неизвестны длины строки и образца.

Алгоритм Рабина, при его схожести с последовательным работает быстрее, а его простота и малые трудозатраты на реализацию, делают его привлекательным для использования в неспециальных программах.

Наихудший результат показал алгоритм последовательного поиска. Как предполагалось лишь при небольшом увеличении длины строки, он работает в разы медленнее остальных алгоритмов.

В данный эксперимент не включен алгоритм поиска с помощью конечного автомата, т.к. мы используем алфавит, состоящий из 66 букв русского алфавита, и построенный автомат был бы слишком громоздок. Эффективность этого алгоритма возрастает при малом количестве букв в алфавите.

Заключение.

Мы рассмотрели различные алгоритмы поиска подстроки в строке, сделали их анализ. Результаты можно представить в таблице (Табл. 4).

Алгоритм

Время на пред. обработку

Среднее время поиска

Худшее время поиска

Затраты памяти

Время работы (мс) при длине строки ≤250

Примечания

Алгоритмы основанные на алгоритме последовательного поиска

Алгоритм прямого поиска

Нет

O((m-n+1)*n+1)/2

O((m-n+1)*n+1)

Нет

234

Mалые трудозатраты на программу, малая эффективность.

Алгоритм Рабина

Нет

O(m+n)

O((m-n+1)*n+1)

Нет

93

Алгоритм Кнута-Морриса-Пратта

КМП

O(m)

O(n+m)

O(n+m)

O(m)

31

Универсальный алгоритм, если неизвестна длина образца

Алгоритм Бойера-Мура

БМ

O(m+s)

O(n+m)

O(n*m)

O(m+s)

32

Алгоритмы этой группы наиболее эффективны в обычных ситуациях. Быстродействие повышается при увеличении образца или алфавита.

Исходя из полученных результатов, видно, что алгоритм Бойера – Мура является ведущим по всем параметрам, казалось бы, найден самый эффективный алгоритм. Но, как показывает эксперимент, алгоритм Кнута – Мориса - Пратта, превосходит алгоритм БМ на небольших длинах образца. Поэтому я не могу сделать вывод, что какой-то из алгоритмов является самым оптимальным. Каждый алгоритм позволяет эффективно действовать лишь для своего класса задач, об этом еще говорят различные узконаправленные улучшения. Алгоритм поиска подстроки в строке следует выбирать только после точной постановки задачи, которые должна выполнять программа.

Сделав такой вывод, мы выполнили цель данной работы, т.к. для различных классов задач был выделен свой эффективный алгоритм.



Библиографический список.

1). Kurtz, St. Fundamental Algorithms For A Declarative Pattern Matching System [Текст]. – Bielefeld:. Universität Bielefeld, 1995. – 238 с.

2). Lecro, T. Exact string matching algorithms [Электронный ресурс]. Режим доступа http://algolist.manual.ru/

3). Ахметов И. Поиск подстрок с помощью конечных автоматов [Текст]: Курсовая работа.- С-П государственный университет информационных технологий, механики и оптики.

4). Ахо, Альфред Структура данных и алгоритмы [Текст]. – М.: Издательский дом «Вильямс», 2000. - 384 с.

5). Белоусов А. Дискретная математика [Текст]. – М.: Издательство МГТУ им. Н.Э. Баумана, 2001. – 744 с.

6). Брайан, К. Практика программирования [Текст].- СПб:. Невский диалект, 2001. - 381 с.

7). Вирт, Н. Алгоритмы и структуры данных [Текст].– М:. Мир, 1989. – 360 с.

8). Гилл, Арт. Введение в теорию конечных автоматов [Текст]. – М., 1966. - 272 с.

9). Глушаков С. Программирование Web – страниц [Текст]. – М.: ООО «Издательство АСТ», 2003. – 387 с.

10). Кнут, Д. Искусство программирования на ЭВМ [Текст]: Том 3. – М:. Мир, 1978. – 356 с.

11). Матрос Д. Элементы абстрактной и компьютерной алгебры: Учеб. пособие для студ. педвузов [Текст]. – М.: Издательский центр «Академия», 2004. – 240 с.

12). Успенский В. Теория алгоритмов: основные открытия и приложения [Текст]. – М.: Наука, 1987. – 288 с.

13). Шень, А. Программирование: теоремы и задачи [Текст]. – М.: Московский центр непрерывного математического образования, 1995.

14). Кормен, Т. Алгоритмы: построение и анализ [Текст]/ Т. Кормен, Ч. Лейзерсон, Р. Ривест - М.: МЦНМО, 2002. М.: МЦНМО, 2002.

Характеристики

Тип файла
Документ
Размер
1,38 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее