23706 (603070), страница 2
Текст из файла (страница 2)
При нулевой рефракции (нулевое значение градиента коэффициента преломления) радиолуч остается прямолинейным. Отрицательная рефракция (вызывающая уменьшение дальности радиосвязи) имеет место, если луч направлен выпуклостью вниз, т.е. луч из менее плотной среды переходит в более плотную. Это может быть только при положительных значениях градиента коэффициента преломления. Положительная рефракция возникает при отрицательных значениях градиента коэффициента преломления и делится в свою очередь на:
пониженную;
нормальную;
повышенную;
критическую;
сверхрефракцию.
Нормальная радиорефракция соответствует рефракции в нормальной (стандартной) атмосфере, имеющей градиент коэффициента преломления –4·10-8 1/м. Радиорефракция при значениях градиента коэффициента преломления от 0 до –4·10-8 1/м называется положительной пониженной рефракцией. Радиорефракция при – 15,7·10-8
– 4·10-8 1/м называется положительной повышенной рефракцией. При значении градиента
= – 15,7·10-8 1/м наблюдается критическая рефракция. При значениях градиента коэффициента преломления менее – 15,7·10-8 1/м имеет место сверхрефракция. Радиус кривизны луча меньше радиуса земного шара, вследствие чего луч испытывает многократное отражение от земной поверхности.
Критическая рефракция и сверхрефракция характеризуются сверхдальним распространением радиоволн. Такое явление связывают с образованием так называемых атмосферных волноводов, которые могут быть как приземными, так и приподнятыми (отражение в этом случае имеет место не от земной поверхности, а от слоя атмосферы, приподнятого над землей). Атмосферные волноводы существенно повышают дальность радиосвязи на СВЧ и дальность радиолокационного наблюдения объектов.
2.2 Методы учета радиорефракции
Явление рефракции в атмосфере приводит к ошибкам измерения координат объектов радиотехническими и оптическими методами. Регулярную составляющую таких ошибок можно учитывать путем введения соответствующих поправок в результаты измерений. В зависимости от изменчивости вертикального градиента коэффициента преломления различают два способа введения поправок:
Метод эквивалентного радиуса Земли;
Метод приведенного коэффициента преломления.
2.2.1 Метод эквивалентного радиуса Земли
Он сводит задачу криволинейного распространения радиоволн к задаче с прямолинейным распространением. Криволинейную траекторию луча «разгибают», увеличивая радиус Земли до тех пор, пока траектория луча не окажется прямолинейной. Радиус Земли, соответствующий прямолинейному лучу, называют эквивалентным радиусом и используют для расчетов. Эквивалентный радиус Земли будет равен:
,(18)
где RЭ – эквивалентный радиус Земли,
KP – коэффициент пропорциональности,
RЗ – радиус Земли.
Коэффициент пропорциональности определяется формулой:
,(19)
где n0 – значение коэффициента преломления на уровне земной поверхности.
Для нормальной атмосферы, полагая
= – 4·10-8 1/м, RЗ=6370·103 м, n0=1, получаем KP=1,33 и RЭ=8460 км.
При расчетах, связанных с обеспечением радиовидимости, следует оперировать с эквивалентным радиусом Земли так же, как и с обычным радиусом Земли при отсутствии рефракции.
2.2.2 Метод приведенного коэффициента преломления
Он состоит в том, что влияние кривизны земной поверхности (а следовательно, и кривизны сферической слоистой атмосферы) заменяют влиянием дополнительного значения коэффициента преломления атмосферы. Для этого криволинейную траекторию луча вместе с земной поверхностью «разгибают» до тех пор, пока сферическая поверхность Земли не превратиться в плоскую, а луч при этом будет иметь другую кривизну. Соответствующий новой рефракции коэффициент преломления атмосферы называется приведенным коэффициентом преломления.
Приведенный коэффициент преломления равен:
,(20)
или в N – единицах:
.(21)
Приведенный коэффициент преломления используется так же, как и обычный коэффициент преломления в задачах распространения над плоской Землей [2].
3. Исходные материалы и методика их обработки
Для изучения закономерности распределения метеовеличин и показателя преломления воздуха летом были использованы результаты, полученные в июле 1977г. на высотной метеорологической мачте (ВММ) в городе Хабаровск (данные были взяты из «Материалов высотных метеорологических наблюдений» [3]). Эти результаты содержат данные измерений температуры и относительной влажности атмосферы на ВММ (из справочника были взяты средние за сутки значения температуры и относительной влажности на высотах 0, 24, 40, 112, 180 м). Температура воздуха на этой мачте регистрировалась термоградиентографом с погрешностью 0,2÷0,3°C. Влажность воздуха измерялась с помощью пленочного датчика с погрешностью 7%.
Данные по давлению были взяты из «Климатического атласа СССР» [4] для уровня 0 м. Для остальных высот (24, 40, 112, 180 м) давление было рассчитано по барометрической формуле:
,(22)
где P – давление на высоте z,
P0 – давление на исходном уровне,
g – ускорение свободного падения,
z – высота в м,
R – универсальная газовая постоянная (287, 05 Дж/кг·К),
T – температура в °K.
Обработка материалов велась с помощью процессора Exel. Данные вводились по датам; для каждой даты значения температуры, влажности и давления вводились на пяти высотах (0, 24, 40, 112, 180 м). Для того, чтобы рассчитать показатель преломления N, еще были необходимы значения упругости водяного пара на всех высотах по суткам. Парциальное давление е было рассчитано по формуле (10). Далее были рассчитаны значения показателя преломления N по формуле (9) и вертикальные градиенты
по формуле (12) (см. приложение таблица 1).
После проведения расчетов были выполнены еще дополнительные действия:
Из общего массива данных через автофильтр находились отдельно данные по каждой высоте за месяц; На этих высотах были посчитаны среднемесячные значения t, f, e, P, N, dN/dH и их среднеквадратические отклонения (см. приложение таблицы 2, 3, 4, 5, 6);
По среднемесячным значениям t, f, e, N на каждой высоте были построены графики вертикальных профилей этих величин (см. анализ графиков и сами графики в главе 4);
Была посчитана повторяемость различных видов рефракции по значениям вертикального градиента dN/dH (см. таблицы 2,3).
После проведения всех расчетов, был сделан анализ полученных результатов (см. главу 4).
4. Вертикальные профили радиометеорологических величин
Для изучения закономерности распределения метеовеличин и показателя преломления воздуха в нижнем слое атмосферы летом был выбран город Хабаровск. Он расположен в юго – восточной части нашей страны (48°35′ с.ш. и 135°в.д.). Хабаровск относится к умеренному климатическому поясу, к области муссонного климата смешанных лесов Дальнего Востока. Средние температуры июля и января составляют + 16°C и – 24°C соответственно [5].
Как уже было сказано раньше, по среднемесячным значениям t, f, e, N на каждой высоте были построены графики вертикальных профилей этих величин (таблица 1).
Таблица 1 – Среднемесячные значения радиометеорологических величин на разных высотах
| Высота, м | Средняя t°C | Средняя f% | Средняя е, гПа | Средний N, N - ед/м |
| 0 | 21,9 | 82 | 21,6 | 355,4 |
| 24 | 22 | 78 | 20,8 | 351 |
| 40 | 23,1 | 73 | 20,9 | 349,4 |
| 112 | 23,2 | 72 | 20,6 | 345,6 |
| 180 | 21,5 | 67 | 17,2 | 331,7 |
Далее приведен анализ полученных графиков.
4.1 Вертикальный профиль средней температуры июля
В умеренном поясе на суше в северном полушарии самым теплым месяцем является июль (именно этот месяц и был рассмотрен в данной работе).
Как уже известно, температура воздуха с высотой в среднем изменяется по линейному закону:
,(23)
где Th – абсолютная температура на верхней границе слоя,
T0 – абсолютная температура у основания слоя толщиной h,
gt – вертикальный градиент температуры.
Если принять в соответствии с международной стандартной атмосферой температуру воздуха у земной поверхности (на «нулевой высоте») равной 15°C (288°K), а градиент температуры до высоты 11км равным 6,5°C на километр подъема, то получится «стандартная» зависимость температуры от высоты (в километрах):
.(24)
С годовыми и суточными изменениями приземного значения температуры связаны характер кривой высотного распределения температуры и градиенты пограничного слоя тропосферы. Так, например, летом высотные зависимости температуры от дня к ночи изменяют свой характер, а градиенты изменяют знак с положительного (уменьшение t с высотой) на отрицательный (рост t с высотой – инверсия). В этом смысле стандартное линейное падение температуры с высотой не отражает процессов, происходящих в пограничном слое тропосферы.
В летний период на высотах до 100 м существует (в среднем сезонном профиле) инверсия температуры, являющаяся следствием ночных приземных инверсий. Выше 100 м наблюдается убывание t с высотой [6].
В рассмотренном мною случае, в среднемесячном вертикальном профиле температуры также имеется слой инверсии и слой падения t (см. рисунок 1).
Из графика видно, что инверсия наблюдается до высоты 80 м. В слое от 0 до 24 м слабо выраженная инверсия (градиент равен – 0,004°C/м). Выше 24 м идет резкое увеличение температуры с высотой и продолжается до 40 м (градиент в этом слое составляет – 0,069°C/м). В слое от 40 до 80 м наблюдается уменьшение интенсивности инверсии (градиент слоя равен – 0,005°C/м) – в этом слое инверсия практически такая же как и в слое от 0 до 40 м (различие составляет 0,001°C). На 80 м наблюдается максимальное среднемесячное значение t = 23,3°C. Начиная с 80 м идет уменьшение температуры с высотой (можно сказать, что на уровне 80 м происходит изгиб кривой в сторону уменьшения температуры – это критическая точка). В слое от 80 до 112 м идет слабое падение t (градиент составляет 0,003°C/м). А вот начиная со 112 м и до 180 м наблюдается резкое падение температуры (здесь градиент равен 0,025°C/м). На 180 м наблюдается минимальное среднемесячное значение t = 21,5°C.
Рисунок 1 – Вертикальный профиль средней температуры июля
4.2 Вертикальные профили средней относительной влажности и средней упругости водяного пара июля
Как мы знаем, основной вклад в изменения коэффициента преломления вносят изменения значений влажности. В тропосфере северного полушария независимо от сезона года влажность воздуха уменьшается с высотой, достигая минимумы вблизи тропопаузы. В стандартной атмосфере влажность воздуха убывает с высотой по эмпирическому соотношению (14).
Среднегодовые и сезонные профили распределения влажности не отражают «мгновенных», существующих в данный момент времени профилей. «Мгновенные» профили обладают значительно более сложной конфигурацией с различного рода изгибами и изломами и характеризуются большой изменчивостью во времени [6].
Вертикальный профиль средней относительной влажности июля не имеет больших изломов, а ведет себя довольно сглажено (см. рисунок 2). Падение f с высотой совсем небольшое. В слоях от 0 до 40 м и от 112 до 180 м более выраженное уменьшение влажности. А вот в слое от 40 до 112 м ее падение практически не наблюдается. Вообще разница f между нулевым уровнем и высотой 180 м составляет всего 15%.















