17757 (601292), страница 3
Текст из файла (страница 3)
1) для y и переменных, соответствующих варианту (см. таб. 4), построить матрицу частных коэффициентов корреляции (корреляционную матрицу). Изобразить матрицу в графическом виде.
Таблица 4 – Варианты заданий
| Вариант j | Независимые переменные (факторные признаки) | Задания по прогнозированию |
| Как изменится производительность труда на московском предприятии, если | ||
| 0 | х1, х2, х4, x5 | среднегодовую численность рабочих сократить на 780 человек, а коэффициент сменности оборудования повысить до 3? |
| 1 | х1, х3, х4, x5 | среднегодовую стоимость основных фондов увеличить на 80 тыс. руб., а и трудоемкость единицы продукции на 0,6? |
| 2 | х3, х4, x5, x6 | трудоемкость единицы продукции сократить в 4 раза, а коэффициент сменности оборудования снизить в 2 раза? |
| 3 | х1, х2, х3, x5 | среднегодовую стоимость основных фондов увеличить на 60 тыс. руб., а коэффициент сменности оборудования – на 0,9? |
| 4 | х1, х2, x6, x7 | среднегодовую стоимость основных фондов сократить до 90 тыс. руб., а удельный вес потерь от брака понизить в 2 раза? |
| 5 | х1, х3, х4, x7 | среднегодовую стоимость основных фондов сократить до 95 тыс. руб., а трудоемкость единицы продукции понизить на 0,1? |
| 6 | х1, х2, x5, x7 | коэффициент сменности оборудования увеличить в 2 раза, а среднегодовой фонд заработной платы уменьшить на 92 тыс. руб.? |
| 7 | х4, x5, x6, x7 | коэффициент сменности оборудования уменьшить в 2 раза, а среднегодовой фонд заработной платы увеличить на 92 тыс. руб. |
| 8 | х2, х3, x5, x7 | коэффициент сменности оборудования увеличить на 1,5, а среднегодовой фонд заработной платы уменьшить на 32 тыс. руб.? |
| 9 | х1, х3, x5, x7 | коэффициент сменности оборудования уменьшить на 1,5, а среднегодовой фонд заработной платы увеличить на 32 тыс. руб.? |
2) построить линейное уравнение множественной регрессии, выбрав в качестве зависимой переменной – y, в качестве независимых – переменные хi, соответствующие варианту (см. таб. 4).
3) Определить коэффициент множественной корреляции и коэффициент детерминации R2 полученной модели
4) Проверить значимость построенной модели (например, используя уровень значимости α=0,05).
5) Если модель значима дать оценку коэффициентов множественной регрессии на основе t-критерия, если tтабл(15-4-1)= tтабл(10)=2,2281 и уровня значимости α=0,05.
6) Пересчитать уравнение множественной регрессии используя только значимые факторы.
7) Проверить адекватность регрессионной модели (полученной на предыдущем этапе анализа).
8) Осуществить прогнозирование в соответствии с вариантом
9) Оформить отчет о проделанной работе используя распечатки отчета, полученного средствами пакета STATISTICA или в MS Word.
Порядок выполнения задания
В системе STATISTICA для построения корреляционной матрицы можно воспользоваться модулем Basic Statistics/Tables (Основные статистики и таблицы), выбрав процедуры
, используя в качестве переменных все исходные данные (Select all). И процедуру
для представления матрицы в графическом виде.
По корреляционной матрице можно в первом приближении судить о тесноте связи факторных признаков х1, х2,…,xm между собой и с результативным признаком y, а также осуществлять предварительный отбор факторов для включения их в уравнение регрессии. При этом не следует включать в модель факторы, слабо коррелирующие с результативным признаком и тесно связанные между собой. Не допускается включать в модель функционально связанные между собой факторные признаки, так как это приводит к неопределенности решения.
Выбор уравнения модели, в большинстве случаев, производятся среди функций перечисленных в таблице 3. В системе STATISTICA для построения линейного уравнения множественной регрессии можно воспользоваться модулем множественной регрессии
, определив зависимую (dependent) переменную y и независимые (independent) переменные х1, х2, x3, x4.
Статистический вывод о пригодности (значимости) уравнения регрессии в системе Statistica обычно проверяется в следующей последовательности.
-
Проводится общая проверка модели, целью которой является выяснение, объясняют ли х-переменные значимую долю изменения у. Определение значимости модели рекомендуется проводить по следующим методам (см. табл. 5).
Таблица 5
| Критерий Фишера | Использование уровня значимости α | Использование коэффициента детерминации R2 |
| Проверяется нулевая гипотеза H0 о равенстве полученных коэффициентов регрессии нулю: a0=a1=a2=…=am=0. Для этого рассчитанное системой Statistica значение F-критерия (Fрасч), сравнивается с табличным значением Fтабл, определяемым с использованием специальных таблиц по заданным уровню значимости (например, =0,05) и числу степеней свободы (df1=m, df2=n-m-1). Если выполняется неравенство Fрасч < Fтабл, то с уверенностью, например на 95 %, можно утверждать, что рассматриваемая зависимость y = а0 + a1x1+ … +amxm является статистически значимой. | Если рассчитанное в Statistica значение уровня значимости р больше, чем заданный уровень значимости (например, =0,05), то полученный результат нужно трактовать как незначимый (для 95% вероятности). В том случае, когда величина р<0,05, то вывод такой: это значимое уравнение с вероятностью 95%. | Рассчитанная системой Statistica величина |
Если регрессия не является значимой, то говорить больше не о чем.
В при веденном примере модель значима, т.к. вычисленный уровень значимости модели р=0,000000<0,05.
Осуществив переход к результатам регрессии (Summary: Regression results) получаем уравнение линейной множественной регрессии вида y(x1, x2, x3, x4)=6,9+0,07x1 –0,00035x2–2,08x3+0,00003x4:
2. Если регрессия оказывается значимой, то существует взаимосвязь между параметром у и переменными х1, х2,…,xm. Однако остается неясно, каково влияние конкретных факторов х1, х2,…,xm на исследуемую функцию у. Можно продолжить анализ, используя t-тесты для отдельных коэффициентов регрессии а0, a1, a2,…,am с целью выяснить, насколько значимой является влияние той или иной переменной х на параметр у при условии, что все другие факторы хk остаются неизменными. Проверку на адекватность коэффициентов регрессии рекомендуется проводить по следующим эквивалентным методам (см. табл. 5).
Таблица 5
| Использование t-критерия Стьюдента | Использование уровня значимости α |
| Анализируемый коэффициент а0, a1, a2,…,am считается значимым, если рассчитанное системой Statistica для него значение t-критерия по абсолютной величине превышает tтабл, определяемым с использованием специальных таблиц по заданным уровню значимости (например, =0,05) и числу степеней свободы (df=n-m-1). | Коэффициент регрессии а0, a1, a2,…,am признается значимым, если рассчитанное системой Statistica для него значение уровня значимости р меньше (или равно) 0,05 (для 95%-ной доверительной вероятности). |
Т.к. вычисленные уровни значимости p-level для коэффициентов, стоящих при x2 и x4 меньше 0,05, то они не значимы. К аналогичному выводу можно прийти, воспользовавшись t-критерием: t2(10)=-0,013<2,228 и t3(10)=1,44<2,228.
С учетом этого факта, пересчитаем уравнение множественной регрессии, выбрав в качестве зависимой (dependent) переменную y и независимые (independent) переменные х1 и x3, коэффициенты при которых значимы:
Получаем:
Т.о., уравнение регрессии имеет вид
y(x1, x3)=4,957+0,096x1–1,559x3
Для выполнения прогнозов по полученному уравнению необходимо показать, что регрессионная модель адекватна результатам наблюдений. С этой целью можно воспользоваться критерием Дарбина-Уотсона, согласно которого, рассчитанный системой Statistica коэффициент dрасч необходимо сравнить с табличным значением dтабл (для совокупности объемом n=15, уровня значимости =0,05 и трех оцениваемых параметров регрессии, значение dтабл=1,75). Если dрасч>dтабл, то полученная модель адекватна и пригодна для прогнозирования. Для определения dрасч в Statistica в окне Residual Analysis на вкладке Advanced необходимо выбрать опцию Durbin-Watson statistic:
В рассматриваемом примере dрасч=1,2<1,75, следовательно, модель не желательно использовать для прогнозирования.
В случае, когда модель адекватна результатам наблюдения для выполнения прогноза в окне Multyple Regression Results вкладки Residuals/assumptions/prediction (Остатки/Предположения/Прогнозирование) выбрать опцию
(прогнозирование зависимой переменной). Например, если в Москве среднегодовую стоимость основных фондов (переменная x1) повысить на 50 тыс. руб., а трудоемкость единицы продукции (переменная х3) уменьшить в два раза, то следует ожидать производительности труда равной 19,16 (увеличится на 19,16-14=5,16):
2.2 Практическое задание 2. Кластерный анализ в STATISTICA
Постановка задачи
Двадцать банков, акции которых котируются на рынке, предоставили следующую информацию (см. табл.), где – x затраты за прошлый период, y – прибыль за прошлый период.
Необходимо:
1) дополнить таблицу до 20 значений. Данные можно не просто придумать, а взять из любых примеров деятельности банков того или иного города, приведенных в книгах по статистике, эконометрике, СМИ, Internet или любых иных источников.
2) построить график по исходным данным (Scatterplot)
3) c использованием системы STATISTICA выяснить (дать рекомендацию) акции каких банков некоторому предприятию имеет смысл приобрести, каких – придержать, а от каких – избавиться.
Таблица
| Номер банка | Затраты x | Прибыль y |
| 1 | 4 | 2 |
| 2 | 6 | 10 |
| 3 | 5 | 7 |
| 4 | 12 | 3 |
| 5 | 17 | 4 |
| 6 | 3 | 10 |
| 7 | 6 | 1 |
| 8 | 6 | 3 |
| 9 | 15 | 1 |
| 10 | 15 | 4 |
| 11 | 5 | 4 |
| 12 | 3 | 8 |
| 13 | 13 | 5 |
| 14 | 15 | 3 |
| 15 | 5 | 9 |
Порядок выполнения задания
Кластерный анализ – один из методов статистического многомерного анализа, предназначенный для группировки (кластеризации) совокупности элементов, которые характеризуются многими факторами, и получения однородных групп (кластеров). Задача кластерного анализа состоит в представлении исходной информации об элементах в сжатом виде без ее существенной потери.
STATISTICA предлагает несколько методов кластерного анализа. В дальнейшем будем использовать Joining (tree clustering) – группу иерархических методов (7 видов), которые используются в том случае, если число кластеров заранее неизвестно.
Используемый метод – Ward’s method – метод Уорда, который хорошо работает с небольшим количеством элементов и нацелен на выбор кластеров с примерно одинаковым количеством членов. В качестве метрики расстояния пакет предлагает различные меры, но наиболее употребительными являются Euclidean distance (евклидово расстояние). При кластеризации элементов в пакете STATISTICA следует выбирать режим: cases (rows) – строки, а при кластеризации факторов: variables (columns) – столбцы. В качестве переменных для рассматриваемого примере следует выбрать все переменные (all).
Для вывода результатов на экран следует выбрать
либо
.
Вывести график на печать.
Проанализировать результат и заполнить таблицу.
| Номер банка | Затраты x | Прибыль y | Рекомендация приобрести/придержать/избавиться |
| 1 | 4 | 2 | |
| 2 | 6 | 10 | |
| 3 | 5 | 7 | |
| 4 | 12 | 3 | |
| 5 | 17 | 4 | |
| 6 | 3 | 10 | |
| 7 | 6 | 1 | |
| 8 | 6 | 3 | |
| 9 | 15 | 1 | |
| 10 | 15 | 4 | |
| 11 | 5 | 4 | |
| 12 | 3 | 8 | |
| 13 | 13 | 5 | |
| 14 | 15 | 3 | |
| 15 | 5 | 9 | |
| 16 | |||
| 17 | |||
| 18 | |||
| 19 | |||
| 20 |















