11571 (600579), страница 5
Текст из файла (страница 5)
Рис. 16. Реакційні центри ФС І і ФС II
Донори електронів локалізовані всередині, тоді як їхні акцептори — зовні тилакоїдної мембрани, що і забезпечує миттєвий розподіл заряду на мембрані.
Фотосинтетична одиниця (ФСО) — це мінімальне функціональне угруповання тилакоїда, здатне до фотосинтетичного розподілу заряду і складається з пігментів антенного комплексу та реакційних центрів.
За останніми даними, на один хлоропласт припадає 2 • 106 ФСО. Ці найдрібніші одиниці здатні здійснювати окиснення й відновлення НАДФ+, мають антенні комплекси пігментів-світлозбирачів, двіфотосистеми, що формують разом із багатьма переносниками електронно-транспортний ланцюг (ЕТЛ) тилакоїдної мембрани.
Досі немає єдиної думки щодо структури ФСО. Насамперед, було запропоновано моноцентральну модель ФСО, згідно з якою в усьому комплексі є лише один РІД. Більшість учених віддають перевагу мультицентральній моделі, яка припускає наявність кількох реакційних центрів (рис. 17).
Рис. 17. Модель мультииентральної (а) та уніцентральної (б) фотосинтетичних одиниць:
о — пігмент антенного комплексу;
• — Р70О або Р680 в реакційному центрі;
* — молекула пігменту антени, яка перейшла у фотозбуджений стан після поглинання фотона або внаслідок перенесення енергії
В хлоропластах вищих рослин існує як мінімум два типи фото-;истем: ФС І і ФС II.
Фотосистема — це дискретна одиниця організації в тилакоїдах певних пігментів разом з іншими молекулами — переносниками електронів і протонів, які беруть участь у світловій стадії фотосинтезу.
Точна локалізація фотосистем у тилакоїдній мембрані хлоропластів поки що не відома. Вважають, що мембрани тилакоїдів строми містять переважно ФС І, а мембрани гран — ФС І і ФС II. Таким чином, у тилакоїдній мембрані молекули пігментів і переносники електронів об'єднані в надмолекулярні функціональні комплекси.
4.3 Z-cxeмa фотосинтезу
Р. Хілл і Ф. Бендалл запропонували схему електронної стадії фотосинтетичного процесу, яка після низки уточнень одержала назву Z-схеми фотосинтезу (рис. 18).
Переносники електронів ЕТЛ розміщуються відповідно до зменшення електровід'ємного редокс-потенціалу. В фотосинтезі вищих рослин перенесення електрона від двох молекул води (окисно-відновний потенціал 0,82 В) до НАДФ+ (окисно-відновний потенціал — 0,32 В) здійснюється за рахунок енергії чотирьох квантів світла з участю відповідно двох фотосистем, що діють послідовно. Механізм передачі електронів в обох фотосистемах — одноелектронний.
Під час поглинання кванта світла ФС II за період, менший за 105 с, електрон від води переноситься в ЕТЛ, проти термодинамічного потенціалу, а саме: від позитивного редокс-потенціалу фередоксину на НАДФ+. Саме в цьому полягає основна суть фотосинтезу — адже в процесі такого транспортування запасається вільна енергія поглинутих квантів. У мембрані тилакоїду розміщується близько 200 таких ланцюгів.
Шлях електрона від води до НАДФ+ з участю обох фотосистем називають нециклічним.
Рис. 18. Z-схема фотосинтезу
Існує й циклічне транспортування електронів з участю лише ФС І, яке надходить від неідентифікованого компонента X на фередоксин, далі — на цитохром Ь6 (Ео = — 0,18 В) і пластохінон (Пх). З відновленого Пх • Н2 електрони транспортуються на цитохром f, далі — на пластоціанін і, нарешті, заповнюють дірку того самого пігменту Р700.
Можливий також псевдоциклічний шлях транспортування електрона, коли в результаті передачі електрона на кисень він відновлюється до Н2О, чим практично маскується процес фотолізу води в ФС II (рис. 19).
Як видно зі Z-схеми, на шляху від однієї молекули Н2О до НАДФ+ крізь переносники передаються два електрони. Якщо один квант енергії, що надходить в кожну фотосистему, піднімає на вищий рівень лише один електрон, то для перенесення двох електронів треба мінімум чотири кванти. Світлозбиральний апарат, який постачає енергію, складається з лабільного світлозбпрального комплексу (СЗК), що обслуговує обидві фотосистеми, та пігмент-білкових антенних комплексів ФС І і ФС II. Уявлення про Z-схему фотосинтезу на цей час є загальноприйнятим, хоча постійно піддається певним змінам і доповненням.
Рис. 19. Можливі шляхи перенесення електронів у хлоропластах:
А — циклічний; В — псевдоциклічний; С — нециклічний
Висновки
Особливості морфології, анатомії та фізіології листка повною мірою забезпечують здійснення його основної функції — фотосинтезу. Функціонування продихів регулює газообмін — надходження вуглекислого газу, виділення кисню та випаровування води.
Фотосинтетичні пігменти — досить складні органічні сполуки, тому їх біосинтез охоплює низку етапів. Хлорофіли, як і подібні до них за хімічними властивостями цитохроми (Fe-порфірини), характеризуються єдиним процесом синтезу від простих складових до тетрапірольних структур.
Пігменти пластид відносять до трьох класів, а саме: хлорофіли, каротиноїди та фікобіліни. Найважливіше значення в процесі фотосинтезу належить зеленим пігментам — хлорофілам. Нині відомо близько десяти хлорофілів, які відрізняються хімічним складом, забарвленням і поширенням серед живих організмів. Основними пігментами, без яких фотосинтез не відбувається, є хлорофіл а для зелених рослин і бактеріохлорофіл для фототрофних бактерій. Пігменти — це сполуки, які вибірково поглинають світло у видимій (400...700 нм) частині спектра.
Непоглинені ділянки сонячного спектра відбиваються, що й зумовлює забарвлення пігменту. Зелений пігмент хлорофіл поглинає червоні та сині промені, тоді як зелені в основному відбиваються.
Фотосинтез — це насамперед фізична проблема. Первинні процеси його розпочинаються з миттєвих реакцій поглинання електромагнітної енергії сонячних квантів, її запасання та стабілізації у вигляді електронного збудження, міграції енергії в пігмент-ліпопротеїдному комплексі хлоропластів.
Світлоіндуковане векторне транспортування електронів між двома фотосистемами, яке розпочинається від води й закінчується НАДФ+, забезпечується завдяки специфічному й несиметричному розташуванню низки окисно-відновних компонентів тилакоїдної мембрани — переносників електронів і протонів, які в сукупності складають електронно-транспортний ланцюг.
Список літератури
-
Бугай С.М. Растенееводство. – К.: Вища школа, 1975. – 375 с.
-
Избранные главы физиологии растений / В. Ф. Гавриленко, М. В. Гусев, К. А. Никитина. — М.: Изд-во Моск. ун-та, І986. — 436 с.
-
Кочубей С. М. Организация фотосинтетического аппарата высших растений. — Киев: Альтерпрес, 2001. — 204 с.
-
Мокроносов А. Т., Гавриленко В. Ф. Фотосинтез: физиологические и биохимические аспекты. — М.: Изд-во Моск. ун-та, 1992. — 319 с.
-
Максимов Н.А. Краткий курс физиологии растений, 1958.
-
Мусієнко М. М. Фотосинтез. — Киев: Вища школа, 1995. — 247 с.
-
Мусієнко М.М. Фізіологія рослин. – К.: Либідь, 2005. – 808 с.
-
Рубин Б.А. Курс физиологии растений. – М.: Высшая школа, 1961. –583 с.
-
Силаева А. Й. Структура хлоропластов и факторы среды. — Киев: Наук, думка, 1978. — 157 с.
-
Фотосинтез: В 2 т. / Под ред. Р. Говинджи. — М.: Мир, 1987. — Т. 1. 728 с; Т. 2. 460 с.
-
Эдварде Дж., Уокер Д. Фотосинтез С3- и С4-растений: механизмы и регуляция. — М.: Мир, 1986. — 590 с.