10661 (600428), страница 3

Файл №600428 10661 (Строение и принцип действия переносчиков) 3 страница10661 (600428) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

4) противоток (бесконечность с цис-стороны).

1. Пермеаза имеет одно или более мест связывания для протона и одно - для лактозы. Эти места бывают поочередно обращены к периплазматической и цитоплазматической сторонам мембаны, и соответствующий конформационный переход является лимитирую щей стадией процесса. Максимальная скорость транспорта равна 25-50 с-1. При наличии трансмембранного протонного электрохимического потенциала (ДДН+) Км для лактозы составляет - 80 мкМ; место связывания протона, возможно, характеризуется высоким рКл, поэтому большую часть времени протонировано.

При ДДН+ = 0 значение Км для лактозы гораздо выше - 15-20 мМ.

2. Транспорт лактозы обязательно сопровождается транспортом Н+ со стехиометрией 1:

3. Конечным результатом транспорта является перенос через бислой положительного заряда. Следовательно, важную роль в установлении равновесия и скорости транспорта играют трансмембранный электрический потенциал и разность протонного химического потенциала.


6. Несколько примеров активных переносчиков, использующих энергию атр и фосфоенолпирувата

Есть несколько замечаний, касающихся первичных активных переносчиков. Охарактеризовано довольно много систем, с помощью которых происходит сопряжение транспорта тех или иных веществ через мембрану с гидролизом макроэргической фосфатной связи или с другой реакцией, в ходе которой высвобождается энергия.

Как уже отмечалось, в основе кинетических моделей многих первичных активных транспортных систем лежит концепция чередования конформационных изменений. При этом совершенно необязательно, чтобы реакция, в ходе которой высвобождается энергия, например реакция гидролиза АТР, была прямо сопряжена с конформационным переходом, необходимым для транспорта; важно лишь, чтобы такое сопряжение существовало с одной или несколькими стадиями кинетического цикла. Требования, предъявляемые к структуре трансмембранного "канала" первичного активного переносчика, аналогичны таковым для других переносчиков, но здесь возникает дополнительная сложность - необходимость контроля сопряжения химической реакции, в ходе которой высвобождается энергия, и транспорта растворимого вещества.

О молекулярной структуре первичных активных транспортных систем известно даже меньше, чем о транспортных белках, обсуждавшихся ранее в этой главе. Идентифицировать группы родственных переносчиков, близких по строению и механизму работы, помогают данные об их аминокислотной последовательности, которых становится все больше. Однако достоверные данные о том, каково строение участков, непосредственно вовлеченных в транспорт веществ, отсутствуют. В основе различного рода структурных моделей активных переносчиков лежит предположение о том, что трансмембранный канал, через который транспортируются вещества, образован кластером трансмембранных амфифильных α-спиралей. Сходным образом и модели, описывающие сопряжение химических реакций и транспорта веществ, опираются на весьма немногочисленные экспериментальные данные. Модели сопряжения можно разделить на две главные группы. Согласно модели прямого сопряжения, химическая реакция оказывает непосредственное влияние на перенос транспортируемого вещества, причем этот процесс не требует значительных опосредованных белком конформационных изменений. Например, протоны, участвующие в гидролизе АТР, могли бы быть именно теми ионами, которые транспортируются через мембрану в ходе данной реакции. Для этого необходимо, чтобы участок комплекса, где протекает химическая реакция (например, гидролиз АТР), и участок связывания транспортируемого вещества были расположены очень близко друг к другу. В отличии от этого модели непрямого сопряжения химическая реакция оказывает влияние на транспортный процесс через опосредованные белком конформационные изменения. Допускается даже, что химическая реакция и активный транспорт могут быть связаны с разными субъединицами внутри комплекса. Эти модели имеют то преимущество, что с их помощью нетрудно объяснить транспорт различных веществ (например, Na+, Н +) одними и теми же или близкородственными белками при участии одних и тех же механизмов.

Активные транспортные системы функционируют со скоростями, типичными для многих ферментов, т.е.102-103 с-1 в условиях насыщения. В отличие от канальных белков селективность в отношении субстрата обусловливается главным образом сродством транспортируемого вещества к активному переносчику. Более того, большинство первичных активных переносчиков обычно функционирует в условиях, когда концентрация переносимого вещества с цис-стороны близка или немного превышает Км и лимитирующей стадией транспорта является конформационный переход белка или химическая реакция, служащая источником энергии для данной системы.

И наконец, роль первичных активных транспортных систем заключается в перемещении вещества через мембрану против его концентрационного градиента в одном направлении (цис → транс). Поскольку переносчик после высвобождения транспортируемого вещества должен опять изменить свою ориентацию с транс на цис, необходим какой-то механизм, препятствующий возвращению на цис-сторону загруженного переносчика (т.е. обратному транспорту вещества). Следовательно, сродство активного переносчика к транспортируемому веществу должно быть/ выше с цис-стороны (где этот субстрат при низких концентрациях связывается с переносчиком), чем с транс-стороны (где оно диссоциирует при гораздо более высоких концентрациях). Если бы это было не так, переносчик работал бы очень неэффективно при высоких концентрациях субстрата с транс-стороны. В такой реакции энергия затрачивается главным образом на изменение сродства переносчика к транспортируемому веществу. Например, ёние Na+ /К+ - АТР-азы или Са2+ - АТР-азы при помощи АТР ведет к стабилизации конформации тех переносчиков, у которых место связывания ионов обращено наружу и которые имеют низкое сродство соответственно к Na+ или Са2+. В то же время связывание АТР стабилизирует ту форму Na+/К+ - АТР-азы, в которой места связывания ионов, обращенные к цитоплазме, имеют низкое сродство к К+. Следовательно, механизм сопряжения реакции, в ходе которой высвобождается энергия, и транспорта, катализируемого активными переносчиками, лучше всего рассматривать исходя из термодинамических принципов, т.е. как временную стабилизацию определенных конформаций и изменение сродства к транспортируемому веществу.

Можно выделить пять групп переносчиков, которые используют свободную энергию макроэргической фосфатной связи для осуществления транспорта веществ, т.е. природа нашла несколько путей решения этой задачи.


6.1 Переносчики катионов плазматической мембраны (е1e2-типа): атр-зависимые ионные насосы

Несколько про - и эукариотических ион-переносящих АТРаз составляют единое семейство и обладают сходными аминокислотными последовательностями и механизмами переноса ионов (табл.2).

Таблица 2.

Наиболее полно охарактеризованы Nа+ /К+-АТРаза из плазматической мембраны животных клеток и Са2+ - АТРаза из саркоплазматического ретикулума. Большинство ферментов этой группы представляют собой единый полипептид с мол. массой 100000; исключение составляет Na+/К+ - АТРаза, выделенная из нескольких источников, которая содержит вторую, меньшую субъединицу с неизвестной функцией. Эти переносчики ингибируются ванадатом и прямо фосфорилируются АТР с образованием фосфорилированного интермедиата, играющего важную роль в транспорте (см. рис.3).

Рис.3 Кинетическая схема для Na+ /К+ - АТРазы. Для Са2+ - АТРазы можно использовать тот же механизм, за исключением того, что вслед за лефосфорилированием Е2 - Р переносчик возвращается в конформацию E1 в незагруженном состоянии (пунктирная линия).

Катионные переносчики этой группы значительно различаются по ионной специфичности (см. табл.2). Неодинакова и стехиометрия транспорта. Например, Са2+ - АТРаза переносит 2Са2+/АТР в полость саркоплазматического ретикулума, в то время как Na+/К+ - АТРаза переносит 3Na+ наружу и 2К + в цитоплазму через плазматическую мембрану. При этом различия в работе АТРазы касаются не только стехиометрии и природы переносимых ионов, но также и того, что Са2+ - АТРаза способна переносить ионы лишь в одном направлении, в то время как Na+ /K+ - АТРаза делает это в обоих направлениях.

Название "фермент Е1E2-типа" было введено в работе, посвященной Na+/К+-АТРазе. Как показали исследования, этот белок существует по меньшей мере в двух различающихся конформациях, для которых характерны разное связывание субстратов и неодинаковая подверженность мягкому протеолизу. Форма Е1 соответствует конформации, в которой места связывания ионов обращены в сторону цитоплазмы (высокое сродство к Na+, низкое - к К+) и которая обладает высоким сродством к АТР. Места связывания ионов в фосфорилированной форме Е2 обращены наружу (высокое сродство к К +, низкое-к Na +). На рис.3 изображен транспортный цикл, в котором участвуют две ненагруженные формы переносчика и две нагруженные, Е2 (2К+) связи E1 (3Na+) связь со "спрятанными" внутри насосного комплекса ионами. Изучение связывания К+ фосфорилированной формой переносчика (Е2-Р) показало, что оно происходит в двух разных местах.

Основные особенности каталитического цикла.

1. E1-форма связывает три иона Na+ с цитоплазматической стороны мембраны и затем взаимодействует с АТР, образуя фосфорилированиый фермент. Фосфорилируется при этом специфический аспартат, консервативный в этой группе ферментов.

2. После отсоединения ADP ионы оказываются "спрятанными" внутри комплекса.

3. Фосфорилирование белка стабилизирует конформацию с низким сродством к Na+; при этом места связывания ионов обращены наружу. Это способствует переходу E1-P в E2-P, в результате которого и осуществляется перенос.

4. В форме Е2-Р места связывания ионов обращены во внеклеточную среду; эта конформация обладает высоким сродством к К+, который связывается, катализирует дефосфорилирование и остается "спрятанным" внутри комплекса. Обратите внимание, что Na+ необходим для быстрого фосфорилирования, а К+ - для быстрого дефосфорилирования. Ванадат связывается с формой Е2, возможно, как некий аналог переходного состояния фосфата. У других ферментов E1E2-типa, например Са2+ - АТРазы, форма Е2-Р дефосфорилируется и переходит в форму E1, которая в свою очередь переходит в незагруженную форму.

5. Лимитирующей стадией каталитического цикла является, по всей вероятности, освобождение К+ и переход его из связанного с ферментом состояния в свободное. Этот процесс стимулируется связыванием АТРс сайтом, обладающим низким сродством.

Следовательно, АТР выполняет две разные функции, выступая в качестве субстрата и аллостерического эффектора. Сколько мест связывания АТР имеет фермент, пока неясно.

Определена аминокислотная последовательность нескольких АТРаз E1E2-типа, включая Na+/К+ - АТРазу (а-субъединица) из нескольких источников, Са2+ - АТРазу, Н+ - АТРазу из плазматической мембраны дрожжей и Neurospora crassa и К+ - АТРазу из S. faecalis. Исходя из профилей гидрофобности, были построены модели, согласно которым эти белковые комплексы содержат 6, 8 или 10 трансмембранных α-спиральных сегментов (рис.4).

Рис.4

Некоторые участки полипептидов, в том числе и сегмент, содержащий сайт фосфорилирования, в значительной степени гомологичны. Все белки имеют большую гидрофильную петлю, содержащую домены, с которыми, по всей вероятности, связываются нуклеотиды и где происходит фосфорилирование.

У Са+ - АТРазы один расщепляемый трипсином сайт, чувствительный к конформационному переходу Е1 → Е2, находится в "трансдукционном" домене (рис.4). Исследовалось также связывание Са2+ с ферментом; было высказано предположение, что транспорту Са2+ предшествует связывание двух ионов Са2+ с определенными участками внутри белкового комплекса. По всей вероятности, у Са2+ - АТРазы места связывания Са2+ с высоким сродством располагаются на значительном удалении от места связывания нуклеотидов, однако эту гипотезу нужно еще проверить. Основные особенности строения Са2+ - АТРазы, представленные на рис.4, согласуются с данными электронной микроскопии, согласно которым этот белковый комплекс сильно выступает из биослоя в цитоплазму. Вероятно, в условиях in vivo АТРазы Е1 / Е2 - типа агрегируют, образуя по меньшей мере димеры, но подтвердить данное предположение экспериментально очень трудно. Тем не менее очевидно, что мономеры также способны к катализу, по крайней мере в некоторых случаях.

Определена аминокислотная последовательность меньшей α-субъединицы Na+/К+ - АТРазы. Было высказано предположение, что эта субъединица имеет одну или четыре трансмембранные а-спирали.

В заключение отметим, что благодаря легкости клонирования этих мембранных АТРаз и возможности использования разных экспериментальных подходов эти системы являются отличным объектом для применения к ним направленного мутагенеза и других генетических методов. Подобные методы уже применяются в исследованиях F1F0 - АТРаз.


6.2 АТР-азы F1F0-типа из митохондрий, хлоропластов и бактерии

Большинство бактерий, а также митохондрии и хлоропласты содержат родственные АТРазы F1F0 - типа, которые используют трансмембранный протонный электрохимический градиент для синтеза АТР из ADP и неорганического фосфата. В физиологических условиях эти ферменты являются АТР-синтазами. Они содержат от 8 (е. coli) до 13 (митохондрии сердца быка) различных субъединиц и, таким образом, являются гораздо более сложными структурами, чем АТРазы E1E2-типa из плазматических мембран. АТРазы F1F0-типа состоят из двух частей:

1) гидрофильного глобулярного F1-комплекса, содержащего места связывания нуклеотидов и функционирующего в качестве АТРазы, и 2) мембраносвязанного F0 - комплекса, который функционирует как Н+ - проводящий канал. F1 - и F0 - комплексы могут отсоединяться друг от друга, а после очистки их можно реконструировать с восстановлением функциональной активности.

F1-комплекс из Е. coli содержит пять субъединиц в стехиометрии aifiiybe. Между тремя парами в составе F1 наблюдается асимметрия, возникающая, по всей вероятности, в результате асимметричных взаимодействий с другими субъединицами. В составе каждого комплекса имеется по три каталитических центра, и для быстрого оборота фермента необходимо, чтобы АТР был связан более чем с одним местом связывания. Для объяснения механизма катализа были построены различные модели с чередованием мест связывания, в частности модель, согласно которой в ходе катализа происходит физическое вращение частей фермента.

F0-комплекс из фермента Е. coli устроен достаточно просто, он содержит только три субъединицы в стехиометрии a1b2c10. Все эти субъединицы необходимы для формирования Н+ - проводящего канала. Остается неясным, можно ли рассматривать F0 как канал в том смысле, как мы его понимаем в этой главе. Полагают, что Н+ - проводящая часть F0 образована α-спиралями из множественных копий γ - субъедииицы. По всей вероятности, эта субъединица содержит пять трансмембранных α - спиралей, в то время как а - и b - субъединицы - по одной. Результаты, полученные с помощью генетических методов, согласуются с предположением, согласно которому погруженные в мембрану части всех трех субъединиц играют важную роль в обеспечении протонной проводимости.

Изучение этой системы показывает нам, сколь успешным может быть применение генетических методов для исследования строения мембранных белков, для которых отсутствуют кристаллографические данные высокого разрешения. Очень важно выяснить, приводит ли замена единственной аминокислоты в таком белке к конформационным изменениям, которые скажутся на катализе. По-видимому, результат такой замены сильно зависит от природы переносчика. Например, как мы уже обсуждали, очень обнадеживающими в этом отношении являются данные, полученные для лактозопермеазы. Очевидно, в следующем десятилетии в изучении взаимосвязи между структурой и функцией мембранных белков главную роль будут играть различные генетические методы, в частности направленный мутагенез.

Характеристики

Тип файла
Документ
Размер
7,63 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7028
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее