183825 (599266), страница 3

Файл №599266 183825 (Экономическая кибернетика) 3 страница183825 (599266) страница 32016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Отношение эмерджентности R задает соответствие между макрофункцией системы и реализующей ее структурой и изменяется всякий раз, когда это соответствие нарушается:

. (1.11)

Структурно-функциональный подход выводит на новый, более глубокий уровень исследования. При этом решаются некоторые проблемы методологического характера:

выбор Ф на основе качественного критерия ;

формирование множества управлений ;

выбор способа учета возмущающих воздействий ;

выбор первичного элемента системы ;

составление перечня подсистем и элементов на основе определенного метода структурной декомпозиции;

определение системы существенных связей системы ;

определение механизма реализации производственных целей:

;

определение механизма управления .

Рассмотренное понятие является полезным при проведении анализа, синтеза или другого исследования.

Необходимость учета фактора времени при описании сложной системы, а также рассмотрения поведенческих аспектов в движении и развитии систем приводит к необходимости исследования динамической системы.

Определение 1.5. Динамической системой S называется сложное математическое понятие:

, (1.12)

определяемое следующими аксиомами.

1. Заданы: множество моментов времени Т, макрофункция системы Ф, множество входных воздействий X, множество возмущений , множество состояний U, множество значений выходных величин Y, структура системы G и отношение эмерджентности R.

2. Множество Т есть некоторое упорядоченное подмножество множества вещественных чисел.

3. Макрофункция системы определяется с помощью двух функций:

и ,

где S – функциональная модель объекта,

V – функция качества, или оценочная функция,

С – множество оценок.

Макрофункция системы определяется парой .

4. Множество возмущений или множество неопределенностей представляет собой множество всевозможных воздействий, которые сказываются на поведении системы. Если такое множество не пусто: , функциональная модель объекта принимает вид , а оценочная функция – .

5. Существует переходная функция состояния

,

значениями которой служат состояния

,

в которых оказывается система в момент времени , если в начальный момент она находилась в состоянии и в течение отрезка на нее действовали входные воздействия .

6. Задано выходное отображение

,

определяющее выходные величины .

Пару , где , называют событием системы S, а множество пространством состояний системы.

Конечный набор состояний системы, задаваемый переходной функцией и определенный на некотором временном отрезке , , называется траекторией поведения системы на интервале .

Говоря о движении системы, мы будем иметь в виду траекторию

поведения системы.

7. Структура системы G определяется в терминах теории графов: , ; , где – вершины, – дуги графа.

8. Отношение эмерджентности

.

Данное понятие динамической системы позволяет выработать общую терминологию, уточнить концептуализацию и обеспечить единый подход в рассмотрении приложений, однако является недостаточно конкретным.

В рамках абстрактной теории систем последнее определение дополняется необходимыми доопределениями: конечномерности, линейности, стационарности и др. Однако теоретическое изложение этих вопросов в рамках данного учебника не производится: впредь по мере необходимости мы априорно будем задавать тип связей между исследуемыми величинами, или классами систем: линейная непрерывная система, конечный автомат и т.д. Задачи, рассматриваемые для динамической системы, традиционны: это вопросы устойчивости, идентификации, инвариантности, наблюдаемости, управляемости и оптимальности, реализуемости и др. Углубленное изучение теории вопроса позволяет грамотно и корректно ставить и решать задачи, связанные с управлением экономическими системами.


Классификация систем

Концептуализация систем в области их классификации определяется исследователем в ходе оценки закономерностей функционирования и поведения объекта. Основные классы систем: дискретные и непрерывные системы, статические и динамические, дискретные и непрерывные, детерминированные и стохастические, линейные и нелинейные, открытые и замкнутые, управляемые и неуправляемые, – определяют выбор моделей, с помощью которых производится собственно исследование. Это не исключает возможности в частных исследованиях систем определенной природы сконцентрировать внимание на системах более узкого класса. В экономической кибернетике большое значение имеет исследование многоуровневых, или иерархических систем, а также адаптивных и самоорганизующихся систем.

Адаптивная система – система, которая может приспосабливаться к изменениям внутренних и внешних условий.

Если воздействия внешней среды изменяются непредвиденным образом, то изменение характеристик управляемого объекта также происходит непредвиденным путем. Примечательно то обстоятельство, что понятие адаптации в теории управления тождественно соответствующему понятию в биологии, означающему приспособление организма к новой для него или изменяющейся среде.

Разновидностями адаптивных систем являются самонастраивающиеся, самообучающиеся, самоорганизующиеся, экстремальные, а также системы автоматического обучения.

Одним из видов самонастраивающихся кибернетических систем является гомеостат. Первый гомеостат был создан английским ученым У.Р. Эшби. Гомеостат моделирует характерное свойство поведения живых организмов – гомеостазис, т.е. возможность поддержания некоторых величин, например, температуры тела, в физиологически допустимых границах путем реализации вероятностных процессов управления. В гомеостате управляемая переменная поддерживается на требуемом уровне механизмом саморегулирования. Примеров гомеостазиса в природе очень много. Например, это гомеостазис, управляющий численностью животных в природе: чем больше появляется зайцев, тем наблюдается большее количество рысей, которые поедают зайцев, ограничивая их рост, а следовательно, и рост численности самих рысей.

Формализация поведения систем

Если поведение системы рассматривать как цепь последовательных конечных изменений ее состояний, то переменные системы, изменяясь во времени, в каждый данный момент будут характеризоваться некоторыми значениями. Если одно определенное значение переменной u1 в момент времени t1 превращается в следующее значение u2 в момент t2, то считается что произошел переход из (u,t1) в (u,t2). Фактор, под действием которого происходит переход, называется оператором. Переменная, испытавшая воздействие оператора, называется операндом. Результат перехода – (u,t2) называется образом. Если рассматривать некоторое множество всех переходов системы из состояния а в состояние в, состояния с в состояние d и т.д., то такое множество переходов для некоторого множества операндов называется преобразованием.

Преобразованиям можно дать математическое представление с помощью метода, предложенного У.Р. Эшби.

Речи некоторое множество состояний системы включает состояния a, b, c, d и на это множество операндов действует оператор Р, то поведение системы можно описать следующим образом:

.

В первой строке записи перечислены состояния системы, или операнды. Во второй строчке, под каждым операндом, находятся образы в которые система переходит из состояний, записанных в верхней строке, под действием оператора Р. В этом преобразовании множество образов второй строки не содержит ни одного нового элемента Преобразование, которое не порождает новых элементов, называется замкнутым:

.

В этом преобразовании множество образов содержит новый элемент е; преобразование выходит за пределы системы, и поэтому называется незамкнутым. Преобразование является однозначным, взаимно однозначным, замкнутым.

Приведенное выше преобразование является неоднозначным.

Преобразование вида является тождественным.

Можно использовать более компактные формы записи. Например, если операнды – суть положительные числа 1, 2, 3, 4, и действует оператор "прибавить к каждому числу 3", то преобразование можно записать:

,

или в компактной форме:

.

Преобразование вида:

Приведенный пример описывает изменение состояний системы с детерминированным действием, описанной однозначным преобразователем.

В матричной форме можно представить неоднозначное преобразование.

Дано преобразование:

при вероятности .

Система событий может быть описана с привлечением аппарата символической логики. Логические функции отрицания, конъюнкции, дизъюнкции, импликации, эквиваленции (читаемой "тогда, и только тогда, когда", ) широко применяются в автоматических системах.

Переходным процессом называется процесс изменения во времени динамической системы, возникающий при переходе из одного установившегося режима работы в другой. В динамической системе он возникает под влиянием возмущающих воздействий, изменяющих ее состояние, структуру или параметры.

Важными характеристиками динамической системы являются длительность и характер переходного процесса.

В непрерывных системах, как правило, установившийся режим достигается за бесконечно большое время. В зависимости от характера в непрерывных системах различают колебательный и монотонный переходный процесс.

Для дискретных систем переходный процесс можно определить как последовательность состояний, вызванную внешним возмущающим воздействием, которую система проходит при постоянных условиях до возвращения в установившийся режим функционирования. Длительность переходного процесса определяется величиной этой последовательности и является конечной для дискретных систем. Детерминированная динамическая система ведет себя так же, как замкнутое однозначное преобразование. Однозначность преобразования определяется тем, что система не может сразу перейти в два других состояния.

Различают три типа, или режима поведения системы: равновесный, переходный и периодический.

Состояние равновесия системы может рассматриваться как некоторая тождественность происходящих в ней преобразований, определяющих одинаковое состояние системы на любом шаге ее развития. В равновесной системе каждая часть находится в состоянии равновесия в условиях, определяемых другими ее частями.

Состояние устойчивости не отождествимо с равновесием. Под устойчивостью системы понимается сохранение ею состояния независимо от внешних возмущений. Характеристика системы как устойчивой не всегда определяет положительную сторону с точки зрения управления: система не способна гибко реагировать на управление.

Трактовка понятия устойчивости позволяет определить характеристику инвариантности. Инвариантность в последовательности состояний системы состоит в том, что, несмотря на изменения, претерпеваемые системой в целом, некоторые ее свойства остаются неизменными.

Таким образом, некоторые высказывания относительно системы, несмотря на ее непрерывное изменение, остаются истинными.

К понятиям равновесия и устойчивости примыкает понятие цикла в преобразовании системы.

Циклом называется такая последовательность состояний системы, при которой повторное изменение преобразований заставляет изображающую точку пробегать повторно эту последовательность. Эго можно проиллюстрировать таким преобразованием:

.

Характеристики

Тип файла
Документ
Размер
5,49 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее