166342 (599197), страница 2
Текст из файла (страница 2)
,
,
- зависит от р=р(V).
V = Const, то dV = 0, dA=0, то A=0, т.е. ΔU =
, в этом случае тепловой эффект
равен изменению функции состояния.
p = Const, то
; T = Const, то
. В этом случае необходимо знать уравнение состояния системы
.
Если система - идеальный газ, то
, поскольку pV = nRT, А
в связи с тем, что при T=const p1V1 = p2V2.
R = 0,082
Это стоит запомнить.
Кроме того, при Т = Const для идеального газа U = Const, dU = 0, A = Q, т.е. все тепло, полученное идеальным газом, перешло в работу.
Для адиабатического процесса dQ = 0 (Q = 0), dU = -dA, -ΔU = A т.е. положительная работа совершается за счет уменьшения U.
2.5. Теплота и теплоемкость.
Теплоемкостью системы называется отношение количества тепла, сообщенного системе в каком-либо процессе, к соответствующему изменению температуры:
1 кал = 4,1840 дж, 1 дж = 107 эрг (СИ)
Поскольку Q-функция процесса, то
, а
,
.
Связь между Ср и Сv для любых систем найдем следующим образом.
dQ = dU + pdV I закон.
Выберем в качестве независимых переменных объем и температуру, тогда внутренняя энергия:
и
,
а
.
Разделим правую и левую части на dT, получим:
.
Отношение
есть отношение приращений независимых переменных, то есть величина неопределенная, и чтобы снять неопределенность, необходимо указать характер процесса. Пусть процесс изохорный.
V = Const
и
=СV.
Отсюда
.
Далее при p = Const
= Ср
И для любых систем
.
Для идеальных газов
(Строго докажем при II законе).
А поскольку pV = RT, то
.
Заметим, что
– работа, которую совершает система, преодолевая внутренние силы сцепления. Производная
имеет размерность давления и называется внутренним давлением.
2.6. Уравнение адиабаты идеального газа.
dQ = dU + pdV.
Для идеального газа dU = CVdT, следовательно, dQ = CvdT + pdV, и если процесс адиабатический dQ = 0, то
,
, где
.
CV и Cp для идеального газа не зависят от температуры:
,
Поскольку
, то
Уравнение Пуассона
Для газов величину γ можно определить, измеряя скорость звука в газе:
– скорость звука в газе, имеющего мольную массу М.
Глава 3. Термохимия.
3.1 Энтальпия.
Если система характеризуется только одним внешним параметром V, т.е. может совершаться только работа расширения, тогда первый закон может быть записан в виде:
.
Если
т.е. тепловой процесс эффекта равен изменению функции состояния. Найдем такую функцию состояния, изменение которой равно тепловому эффекту при постоянном давлении. Для этого выражение для I закона необходимо преобразовать так, чтобы давление находилось под знаком дифференциала. Обратим внимание, что
d(pV) = pdV + Vdp и pdV = = d(pV) – Vdp, а подстановка в выражение для I закона дает:
dQ = dU + d(pV) – Vdp = d(U + pV) – Vdp = dH -Vdp
H ≡ U + pV | – функция состояния называется энтальпией. |
. При
.
Выберем в качестве независимых переменных Т и р, тогда:
– отношение приращения независимых переменных является неопределенной величиной, чтобы избежать этого нужно указать конкретный процесс. Если p = Const, то
Очевидно, есть определенная симметрия между U и H:
3.2. Теплоты химических реакций. Закон Гесса.
При химических реакциях происходит изменение U, поскольку U продуктов реакции отличается от U исходных веществ. Пусть U2 – внутренняя энергия продуктов реакции, U1 – внутренняя энергия исходных веществ, ΔU = U2 –U1 - изменение U в результате химического процесса. Аналогично для энтальпии. Изучением теплот химических реакций занимается термохимия.
Q - теплота химической реакции, зависит от способа проведения химической реакции.
,
.
Т.о., в этих случаях Q равна изменению функции состояния и поэтому не зависит от пути процесса, а лишь от начального и конечного состояния.
Закон Гесса (1836). Если из данных исходных веществ можно получить заданные конечные продукты разными путями, то суммарная теплота процесса (при
или при
) на одном каком-нибудь пути равна суммарной теплоте процесса на любом другом пути, т.е. не зависит от пути перехода от исходных вществ к продуктам реакции.
3.3. Термохимические уравнения.
Для облегчения расчетов следует поступать так если p=Const, то
Уравнения химических реакций вместе с тепловыми эффектами называются термохимическими уравнениями и с ними можно оперировать как с алгебраическими уравнениями. Запомним, что если:
Qp выделяется,
Qp поглощается
3.4. Связь между Qp и QV
.
,
,
, если реагенты только жидкие или твердые вещества
.
, где Δn – изменение числа молей газообразных участников реакции:
CO + H2O = CO2 + H2 Δn = 0 Qp = Qv
N2 + 3H2 = 2NH3 Δn = -2 Qp < Qv
Zn (тв) + H2SO4 (ж) = ZnSO4 (p-p) + H2 (газ) Δn = +1 Qp > Qv
Но для реакции в конденсированной системе:
CuSO4 + 5H2O (ж) = CuSO4 5H2O (кр)
,т.е. разница между QP и QV очень мала, ею можно пренебречь.
3.5. Теплота образования химических соединений.
Теплотой образования химического соединения называется тепловой эффект реакции образования одного моля данного соединения из соответствующих чисел молей простых веществ.
Стандартной теплотой образования
называется теплота образования химического соединения из простых веществ, находящихся в стандартных условиях, причем продукты реакции также находятся в стандартных условиях. За стандартные условия приняты: температура 25 0С (298,15 К) и 1 атм (760 торр).
Замечания:
-
Стандартная теплота образования простого вещества равно нулю
-
Простое вещество имеет то агрегатное состояние, в котором оно находится в стандартных условиях.
С (графит)
С (алмаз)
= 453,2 кал/г-ат
О2 (кислород)
= 0 кал/моль
О3 (озон)
= 34,0 ккал/моль
Исключение: для фосфора – белый фосфор
Теплоты образования химических соединений обычно вычисляются по экспериментальным теплотам соответствующих химических реакций, например, для I2O5 :
?
1.
2.
3.
4.
5.
6.
7.
8.
9.
По закону Гесса:
Теплоты образования химических соединений приводятся в справочниках физико-химических величин и для вычисления теплового эффекта химических реакций необходимо из суммы теплот образования продуктов реакции вычесть сумму теплот образования исходных веществ:
Заметим, что в дальнейшем изложении мы введем еще ряд функций состояния и для них закон Гесса также справедлив.
3.6. Зависимость теплового эффекта химической реакции от температуры.
Если Hi мольная энтальпия химического соединения, то
. Очевидно, что для некоторой химической реакции
и
.
Дифференцирование по температуре, разделение переменных и интегрирование в интервале от Т1 до Т2 дают (р = const):
и
уравнение Кирхгоффа
Аналогично для ΔU и Cv.
Equation Section 1Глава 4. Второй закон.
4.1. Определение.
Каждая термодинамическая система обладает функцией состояния -энтропией. Энтропия процесса вычисляется следующим образом. Система переводится из начального состояния в соответствующее конечное состояние через последовательность состояний равновесия, вычисляются все подводимые при этом к системе порции тепла dQ, делятся каждая на соответствующую ей абсолютную температуру Т источника теплоты и все полученные таким образом значения суммируются:
и
.
При реальных (неидеальных) процессах энтропия замкнутой (изолированной) системы возрастает
, т.е.
.
Энтропия – способность к превращению (Клаузиус)
По I закону
и для идеального газа
и
.
, т.е. для идеального газа
обладает свойствами полного дифференциала, т.е. S есть функция состояния.
| Распространение |
4.2. Другие формулировки
Тепло не может само по себе перейти от системы с меньшей температурой к системе с большей температурой (Клаузиус).
Невозможно получать работу, только охлаждая отдельное тело ниже температуры самой холодной части окружающей среды (Кельвин).
4.3. Обратимые и необратимые процессы.
Процесс называется равновесным, если в прямом и обратном направлении проходит через одни и те же состояния бесконечно близкие к равновесию. Работа равновесного процесса имеет максимальную величину по сравнению с неравновесными процессами и называется максимальной работой.
Если равновесный процесс протекает в прямом, а затем в обратном направлении так, что не только система, но и окружающая среда возвращается в исходное состояние и в результате процесса не остается никаких изменений во всех участвовавших в процессе телах, то процесс называется обратимым.















