166314 (599193), страница 2

Файл №599193 166314 (Основные понятия и образы квантовой механики) 2 страница166314 (599193) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

1.2.8. В итоге в качестве математического образа все измерительной процедуры получаем операторное уравнение:

(1.1)

Уравнения подобной структуры хорошо известны в математике. Это так называемые уравнения на собственные значения в матричной алгебре, а также в теории специальных функций, построенных в разделе некоторых типов дифференциальных уравнений.

1.3. Основные черты математического аппарата квантовой механики

1.3.1. Обсудим важнейшие черты операторного уравнения (1.1). Оно предписывает общую алгебраическую схему описания физических свойств стационарных систем в микромире. Эта схема требует, чтобы в качестве операторов физических величин использовались только такие действия или комбинации действий, которые преобразуют волновые функции сами в себя с точностью до постоянного множителя. Соответственно, в качестве волновых функций могут применяться только такие функции, которые способны к подобному преобразованию. Их называют собственными функциями оператора . Множители в уравнении (1.1) являются собственными числами или собственными значениями соответствующего оператора .

1.3.2. Хорошо известно, что простейшее математическое описание периодических процессов достигается с применением алгебры комплексных чисел. Комплексное число С и комплексно-сопряженное с ним С* состоят из одинаковых действительных частей (Rе) и различаются по знаку мнимых частей (Im),

, где

Произведение называется квадратом модуля комплексного числа

Экспоненциальные функции с комплексными показателями имеют тесную связь с тригонометрическими функциями и широко распространены в описании пространственных и временных периодических процессов. Рассмотрим для примера сопряженные функции:

(1.2)

(1.3)

Легко видеть, что квадрат их модуля, равный их произведению, единичен:

Периодичность есть характерная черта стационарных движений в микросистемах, поэтому в квантовой механике широко используется комплексное представление волновых функций, особенно при описании движений, включая вращательную составляющую.

1.3.3. В то время как волновые функции и операторы могут иметь комплексную форму, это недопустимо для собственных чисел операторов в уравнении (1.1), которые изображают измеримые величины и поэтому должны быть только действительными. Из этого вытекает жесткое требование к математической конструкции операторов квантовой механики, сформулировать которое мы сможем несколько ниже.

Очень важно, что не существует никаких математических или физических соображений, которые отдавали бы предпочтение числу или функции перец комплексно-сопряженным двойником. Они равноправны во всех расчетах, так как в конечном итоге приложения комплексных чисел и функций всегда связаны с их модулем. По этой причине уравнение (1.1) и ему комплексно-сопряженное выражение (1.4) физически эквивалентны:

(1.4)

Величина должна быть действительной и равной , т.е. Такому требованию отвечают собственные числа так называемых эрмитовых или самосопряженных операторов (Шарль Эрмит – французский математик).

1.3.4. Сформулируем условие самосопряженности операторов. Выделим из операторных уравнений (1.1) и (1.4) собственные значения и , не нарушая равенств. Учтем, что символ оператора означает преобразование функции, записанной справа от него.* Поэтому, чтобы не нарушить смысла преобразования, влекущего за собой нарушение равенств (1.1) и (1.4), домножим слева первое из них на , а второе на . Затем следует справа домножить каждую из частей (правую и левую) обоих уравнений на произведение дифференциалов всех координат и результат проинтегрировать во всем пространстве изменения аргументов. Сравним ход этих преобразований:

, ;

, ;

, ;

, .

Вообще говоря, это дело вкуса и удобства. Важно далее всюду соблюдать оговоренные однажды правила математического синтаксиса.

Правые части этих последних равенств равны:

и

Поэтому равны и левые, т. е. получаем равенство (1.5), которое выражает условие самосопряженности операторов, имеющих действительные собственные значения.

(1.5)

1.3.5. В формуле (1.5) представлена функция и ее комплексно-сопряженный "двойник" , а в общем виде эрмитов оператор связывает две разные функции f и g аналогичной формулой:

(1.6)

Обратим внимание читателя на то, что процедура комплексного сопряжения оператора и перевод его в связана с тем, что мнимая единица в качестве численного параметра входит в конструкцию оператора.

1.3.6. Запись уравнений типа .(1,5) и (1.6) можно упростить и одновременно придать им дополнительный смысл, используя символы-скобки и , предложенные Дираком и называемые бра- и кет-символами соответственно (от англ. brасkets – скобки). Итак, вместо знаков интеграла, функций и дифференциалов переменных, образующих вместе операцию интегрирования, запишем эквивалентные символы:

и

где называется бра-вектором, а – кет-вектором. В таком случае интеграл от произведения двух функций приобретает вид скалярного произведения

(1.7)

Если в интеграл введем оператор, то получаем также символическое скалярное произведение

, (1.8)

в котором вектор преобразован оператором в новую волновую функцию-вектор, равный .

Таким образом, в этой записи очень многие важные интегралы квантовой механики оказываются просто скалярными произведениями различных бра- и кет-векторов. Формула (1.6) в бракет-символах приобретает вид:

= (1.9)

1.3.7. Из условия (1.6) или (1.9) вытекает чрезвычайно важное свойство собственных функций эрмитова оператора, называемое свойством ортогональности. Поясним смысл этого определения. Для этого рассмотрим две разные собственные функции эрмитова оператора, например, f и g, которым отвечают разные ненулевые собственные числа и соответственно, т.е. справедливы операторные равенства

и (1.10)

Образуем скалярные произведения

и (1.11)

Из первого скалярного произведения вычтем произведение, комплексно-сопряженное второму, и с учетом (1.11) получим:

(1.12)

По определению эрмитова оператора получаем:

, ,

откуда следует:

(1.13)

Поскольку , то уравнение (1.13) справедливо, если

, или (1.14)

Функции g и f, удовлетворяющие условию (1.14), называются ортогональными во всей области определения переменных по аналогии с ортогональными векторами, скалярное произведение которых равно нулю.

1.3.8. Ортогональный набор функций, эрмитова оператора очень удобен тем, что функцию, определенную на тех же переменных, можно разложить в ряд по набору. Таким образом, он может рассматриваться в качестве базисного набора, аналогичного набору ортогональных базисных векторов.

1.3.9. Такое разложение представляется всегда в виде линейной комбинации. Например, если ортогональный набор включает функции (f1, f2, f3,... fn,...), , то строгое разложение произвольной функции F примет вид бесконечного ряда:

(1.15)

Если выбираемый ортогональный набор ограничен, то ряд состоит из конечного числа слагаемых.

Ортонормированные наборы собственных функций эрмитовых операторов представляют собой естественную основу для конструирования математических образов дискретных состояний физических систем.

1.3.10. Второе важное требование, которое предъявляется к операторам квантовой механики – это линейность. Линейным называют оператор, обладающий следующими свойствами:

(1.16)

где и – произвольные функции и а – произвольная постоянная. Можно подумать, что это слишком простые требования, но дело в том, что сравнительно узкий круг математических преобразований удовлетворяет им. Например, операция взятия синуса или возведения в степень не линейны и не могут служить основой для конструирования квантово-механических операторов:

Это негативные примеры. Напротив, операции умножения на некоторую функцию или число, дифференцирование и интегрирование отвечают линейности, т.е. подчиняются уравнениям

1 Следует различать исследуемый образец, также приготовленный в макроскопической форме и изучаемую микросистему, одну из огромного множества в его составе. Возможность выделения отдельных микросистем – атомов, молекул и элементарных частиц достижима в современных экспериментах, но прибор довести до микроуровня нельзя, хотя современная микроэлектроника сделала серьезные шаги в этом направлении.

Характеристики

Тип файла
Документ
Размер
1,22 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6480
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее