150593 (598879), страница 2
Текст из файла (страница 2)
Зведемо рівності (10.3.9) – (10.3.11) до спільного знаменника й додамо їх
І1(R1+r1) + I2(R2+r2) + I3(R3+r3) = 1+ 2+ 3,
або
, (10.3.12)
де
- алгебраїчна сума всіх спадів напруг в замкнутому колі;
- алгебраїчна сума електрорушійних сил в цьому колі.
Рівність (10.3.12) називається другим правилом Кірхгофа. Правила Кірхгофа значно полегшують розрахунки розгалужених кіл і широко використовуються в електротехнічних дисциплінах.
4. Закони Ома й Джоуля-Ленца в диференціальній формі. Густина електричного струму в провіднику
Розглянемо елемент провідника перерізом S і довжиною
. Концентрація вільних електронів у такому провіднику дорівнює n (рис.10.5)
Рис.10.5
Нехай в такому елементі за допомогою сторонньої сили джерела створений струм І. Величина струму в провіднику буде дорівнювати:
, (10.4.1)
де
- число зарядів у елементі провідника з об’ємом
; n – концентрація вільних електронів; qo – елементарний електричний заряд;
- середня швидкість направленого руху носіїв струму.
Розрахунки показують, що
наближено кілька міліметрів за секунду. Це дуже мала швидкість. Швидкість хаотичного руху електронів у металевому провіднику при звичайних умовах має порядок 106 м/с.
Густину струму провідності в провіднику легко знайти, поділивши (10.4.1) на переріз провідника S
. (10.4.2)
Розрахунки показують, що у кабелі з двох жил перерізом 1 мм2 безпечним є струм, який не перевищує величини (12,5 15)А. Якщо цей струм, а також концентрацію вільних носіїв струму, яка для більшості провідників не перевищує 1029 м-3 , підставити у формулу (10.4.2), то одержимо значення швидкості направленого руху електронів. Ця швидкість буде дорівнювати лише кілька міліметрів за секунду. В процесі направленого руху носії струму більшість часу перебувають у вузлах кристалічної решітки.
Знайдемо середню швидкість направленого руху носіїв струму у провіднику, які рухаються під дією сторонніх сил джерела струму.
Будемо вважати, що між двома сусідніми взаємодіями з вузлами кристалічної решітки носії струму рухаються з прискоренням a. Нехай між двома сусідніми взаємодіями кожен з електронів вільно рухається протягом часу . Перед взаємодією швидкість електрона досягає максимального значення max Вириваючись із вузла решітки швидкість електрона дорівнює нулю.
Тому середня швидкість направленого руху електрона між двома сусідніми взаємодіями буде дорівнювати
. (10.4.3)
Оскільки рух рівноприскорений, то
max = a.
Прискорення руху носіїв струму простіше знаходити із 2-го закону Ньютона, тобто
qоE = ma,
звідки
а =
.
Тому
max =
, (10.4.4)
де qo – елементарний заряд; Е – напруженість електричного поля у провіднику; - час вільного руху між двома взаємодіями; m – маса електрона.
Підставимо (10.4.4) у (10.4.3), одержимо
. (10.4.5)
Значення середньої швидкості
підставимо у формулу (10.4.2), одержимо закон Ома у диференціальній формі
, (10.4.6)
де n – концентрація вільних носіїв струму у провіднику; q0 – величина елементарного заряду; τ – час вільного руху носіїв струму між двома сусідніми взаємодіями; m- маса носія струму у провіднику (у більшості випадків це маса електрона).
Величину =
називають питомою електропровідністю провідника.
Знайдемо енергію, яка переноситься вільними електричними зарядами у провіднику одиничного об’єму, за одиницю часу, тобто
, (10.4.7)
де - енергія, яка переноситься електронами одиниці об’єму провідника за одиницю часу.
Оцінити цю енергію можна так. За одиницю часу кожен з електронів захоплюється вузлами кристалічної гратки
разів, щоразу передаючи гратці кінетичну енергію
. Оскільки в одиниці об’єму провідника міститься n вільних електронів, то енергія, яка переноситься всіма електронами одиниці об’єму провідника за одиницю часу буде дорівнювати
, (10.4.8)
де n – концентрація вільних електронів у провіднику;
- число взаємодій кожного із електронів протягом 1с з вузлами кристалічної гратки провідника;
- кінетична енергія, яка щоразу передається кожним із електронів в процесі взаємодії з вузлами кристалічної гратки.
Підставивши в (10.4.8) значення max із (10.4.4), одержимо закон Джоуля-Ленца в диференціальній формі
, (10.4.9)















