115964 (598489), страница 8

Файл №598489 115964 (Задачи в школьном курсе математики) 8 страница115964 (598489) страница 82016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 8)

100-с2; ; 812-92; ; и т. д.

Далее рассмотрим реализацию педагогического принципа прочности знаний при составлении систем упражнений. Принцип проявляется в наличии однотипных упражнений. По данным ряда психологов, чтобы у учащихся произошло самостоятельное обобщение, в некоторых случаях необходимо более ста однотипных упражнений. У сильных учащихся такое обобщение может происходить «с места», после решения единственного упражнения.

Не все учебники учитывают принцип прочности. В курсе алгебры седьмого класса при изучении формулы а2- в2 только в соответствующем разделе учебника приведено более сотни упражнений, а в пособии по геометрии А.В. Погорелова для закрепления, например, формул и - ни одного.

Отсутствие простейших однотипных упражнений сказывается на результатах обучения слабых учащихся.

При подборе или составлении однотипных упражнений необходимо руководствоваться закономерностью появления неверных ассоциаций. Она состоит в том, что если в процессе обучения выполняются три условия: 1) учащийся выполняет задания одного типа; 2) некоторые несущественные особенности заданий неизменно повторяются; 3) учащийся может получить верный ответ и в том случае, когда не осознает эту особенность, то степень осознания этой особенности снижается.

Пример.

.

Ответ получен правильный. Ошибка не проявилась. При наличии сходных упражнений, например, и т. д. неверная ассоциация закрепляется. Благоприятствует образованию неверной ассоциации то обстоятельство, что действие ускоряется, укрупняется, контроль сознания под влиянием однотипных упражнений ослабевает. Упрочение ошибочной ассоциации начинается после трех однотипных упражнений.

Созданию неверных ассоциаций препятствует система упражнений, включающая контрпримеры. Я.И. Груденов называет контрпримером любую задачу, любое упражнение, которое помогает выявить, а значит, устранить неверную ассоциацию. Такое использование термина «контрпример» отличается от принятого в логике. Это, если можно так выразиться, дидактический контрпример. В последнем случае таким контрпримером является система вида: .

Следовательно, каждое третье упражнение должно быть контрпримером, т. е. варьировать несущественные признаки системы упражнений.

В качестве подобного рода контрпримеров могут быть использованы различные взаимообратные упражнения. Еще И. П. Павлов доказал, что применение контрастных перемежающихся раздражителей вместо одного является рациональной основой обучения. Обратная задача, упражнение должны решаться вслед за прямой, пока информация находится в активной форме, при этом особенно благоприятным моментом для вторичного включения сознания, т. е. для решения обратной задачи являются ближайшие 30-40 минут. Важным моментом является наличие в системе упражнений полного цикла взаимно обратных упражнений.

Создание такого цикла упражнений предполагает наличие нескольких этапов: 1) изменение форм действий на обратные при сохранении данных; 2) выполнение обратного действия с последующей проверкой с помощью прямого; 3) выполнение упражнений без всякого порядка, проверка осуществляется в отдельных случаях. Примерами обратных упражнений к заданию разложить выражение на множители будут задания на восстановление записи: , , .

Последние три упражнения качественно отличаются от исходного. Если при выполнении однотипных упражнений ученик быстро перестает проводить обосновывающие рассуждения, сокращает звенья рассуждений, то при выполнении обратных - наоборот. Выполнение обратных упражнений предполагает осуществление проверки каждой операции, постоянного контроля, а значит, способствует развитию самоконтроля.

Следовательно, одновременное изучение взаимообратных действий и выполнение соответствующих упражнений целесообразно.

Исходя из этой точки зрения, формулу разности квадратов двух выражений следует изучать совместно с умножением разности двух выражений на их сумму, а не друг за другом, как это имеет место в школьной практике. Можно одновременно рассматривать нахождение дроби от числа и числа по его дроби, прямую и обратную пропорциональность и многое другое. В этом, проявляет себя принцип укрупнения дидактических единиц П. М. Эрдниева, принятый на вооружение многими учителями.

При выполнении системы упражнений важно соблюдение педагогического принципа сознательности.

Рассмотрим некоторые наиболее важные психологические аспекты выполнения упражнений, влияющие на сознательность усвоения изучаемого материала.

В теории поэтапного формирования умственных действий, разработанной П.Я. Гальпериным и Н.Ф: Талызиной, доказывается необходимость выполнения действий на первичное закрепление определений, правил, теорем развернуто, т. е. без пропусков отдельных операций в материализованной и громкоречевой формах, которые должны предшествовать действиям в уме.

Чтобы помочь учащемуся сознательно усвоить материал, чтобы научить ученика, особенно не очень способного к математической деятельности, учителю необходимо представить себе то умственное действие, которому он хочет научить ученика в полном объеме, без пропусков каких-либо операций, т. к. пропуски отрицательно сказываются на сознательном восприятии умственных действий. Противоположностью полноты является свернутость действия, пропуск какой-либо умственной операции. Все выделенные операции при закреплении действия необходимо выполнять во внешнем плане, т. е. делая записи и в громкоречевой форме - комментируя записи. В качестве примера рассмотрим полную запись решения примера на вычитание смешанных чисел:

Некоторое время ученики выполняют развернутое действие, проговаривая все операции в обобщенном виде, например: «Представим каждое из смешанных чисел в виде суммы целой и дробной частей, найдем наименьший общий знаменатель дробей, приведем дроби к наименьшему общему знаменателю, сравним числители получившихся дробей и т. д.» Такая форма позволяет осознать все операции действия, выполнять их с пониманием.

При выполнении различных умственных действий полезно не только выделять отдельные шаги - операции действия, но и материализовать действие, т. е. составлять некоторую видимую схему действия. В качестве примера материализации умственного действия рассмотрим процесс решения задач на дроби (нахождения дроби от числа, числа по дроби, отношения двух чисел).

При решении задач этих типов ученик должен уметь распознать задачу, выяснить является ли она задачей на нахождение дроби от числа, числа по его дроби или на нахождения дроби-части, которую одно число составляет от другого, а затем выполнить соответствующие преобразования - операции.

Для решения этих задач может оказаться полезной материализованная основа действия, состоящая из трех составляющих:

Все число

(именованные единицы)

Значение дроби

(именованные единицы)

Дробь

(отвлеченное число)

Тогда на одних и тех же числовых значениях можно рассмотреть зависимости между отдельными составляющими структуры, т. е. найти каждый из компонент действия, если известно два других. Получаем в общем виде зависимость: I=II:III; II=I·III; III= .

При необходимости решить конкретную задачу, например, найти от числа 60 кг, вначале выясняется, какие элементы структуры задачи нам известны: что такое 60 кг и что такое .

Получается запись:

I. Все число (и.е.)

П. Значение дроби

(и.е.)

III. Дробь

60 кг

?

Далее можно воспользоваться полученной ранее зависимостью: II = I·III. При выполнении упражнений в указанном разделе необходимо рассмотреть особые случаи, когда все число или значение дроби представлены правильной дробью и когда число в третьей графе превышает единицу.

Постепенно, с увеличением опыта, необходимость в материализованной опоре у учащихся отпадает, действие производится в громкоречевой форме, а затем и в форме внутренней речи, с ориентацией на ранее приведенную схему, но которой теперь перед глазами нет.

Согласно учению о поэтапном формировании умственных действий, контроль за их выполнением должен осуществляться со стороны учителя на этапах материализации и громкой речи до появления самоконтроля. Понятно, что в условиях классно-урочной системы пооперационный контроль со стороны учителя за действиями каждого ученика осуществить невозможно. Но возможна показательная корректировка отдельных ответов учащихся.

Использование идей теории поэтапного формирования умственных действий в школе дает ощутимые результаты, но в то же время эта теория требует специальных усилий по ее перенесению в условия работы со всем классом.

Представляется, что компактный метод использования формулировок правил, определений и теорем является одной из возможных модификаций использования теории поэтапного формирования умственных действий. Из опыта работы учителей выделены два метода применения определений, теорем, правил.

Первый из них - раздельный, когда учащиеся несколько раз повторяют изученную формулировку и лишь затем отрабатывают ее в упражнениях. Этот метод сравнительно часто используется в школе, т. к. он прост в организационном отношении. Он оправдан, если изучаемые формулировки достаточно просты, такие как, например, правило умножения обыкновенных дробей или определение медианы треугольника.

Если же формулировка не совсем простая, учащиеся не успевают ее осознать и запомнить и выполняют упражнения без опоры на теорию. Если изучаемая формулировка достаточно сложная, то ее запоминание облегчается, если оно проходит одновременно с формированием умения по применению этой формулировки. Эта закономерность, заключающаяся в том, что понимание материала является важнейшим условием его запоминания, и используется в другом методе, названным компактным.

Суть компактного метода заключается в том, что запоминание и умение использовать формулировку осуществляются одновременно. При этом необходимо учесть еще одну закономерность усвоения, что понимание затрудняется, если установка на полноту и точность запоминания появляется до того, как материал понят в целом. Например, бесполезно требовать от учащихся формулировок правила сложения двух дробей с разными знаменателями или теоремы о вписанном угле, если они не отработаны при выполнении соответствующих упражнений.

При этом предлагается следующая последовательность действий. Вначале учитель разбивает изучаемую формулировку на составные части. В определении выделяются существенные свойства, в теореме - отдельные части условия и заключения, а в правиле - отдельные шаги действия. Затем учитель показывает образец действия - читает формулировку по частям и одновременно выполняет упражнение. При этом непроизвольное запоминание, которое имеет место в условиях активных форм работы, оказывается более прочным, чем произвольное, опирающееся на пассивные формы работы.

ПРИМЕР. Допустим, учащиеся вместе с учителем вывели формулу квадрата суммы двух выражений. Полученная формулировка, представленная в учебном пособии, разбивается на составные части. Моментом материализации умственного действия при этом является проведение вертикальных черточек в тексте правила, осуществляющих разбиение: «Квадрат суммы двух выражений // равен квадрату первого выражения, // плюс удвоенное произведение первого и второго выражений //, плюс квадрат второго выражения».

Далее следует образец выполнения упражнения: учитель читает формулировку по частям и после прочтения каждой части выполняет соответствующую операцию. Например, выполняется упражнение (а + 2в)2. Учитель читает первую часть правила: «Квадрат суммы двух выражений», указывает на соответствующие обозначения квадрата и суммы и отмечает, что в данном случае имеет место полученная формула и что первое выражение -это а, а второе - 2в. Затем учитель читает дальше: «Равен квадрату первого выражения» и записывает промежуточный результат и т. д.

После этого ученик у доски выполняет другое упражнение аналогичным образом. Как можно видеть, такая работа позволяет одновременно запоминать формулировку и учиться ее применять. Компактный метод ориентирует учащихся при комментировании выполнения упражнений не на буквальное проговаривание записи, а на произнесение соответствующих формулировок по частям и реализацию каждой части формулировки в конкретном случае.

Итак, нами рассмотрен ряд требований, которые целесообразно предъявить к системе упражнений, исходя из общих педагогических принципов обучения. Эти требования не исчерпывают всего многообразия проблем, связанных с упражнениями, но позволяют планомерно и целенаправленно подходить к отбору и построению системы упражнений.

21



Характеристики

Тип файла
Документ
Размер
1,62 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6331
Авторов
на СтудИзбе
312
Средний доход
с одного платного файла
Обучение Подробнее