86112 (597870), страница 2

Файл №597870 86112 (Числовые ряды) 2 страница86112 (597870) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Члены данного ряда положительны и больше соответствующих членов расходящегося гармонического ряда

т. к.

Следовательно, по признаку сравнения исходный ряд расходится.

Теорема 3.2. (Предельный признак Даламбера2).

Пусть члены положительного ряда (1.1) таковы, что существует предел

Тогда: 1) при q < 1 ряд (1.1) сходится;

2) при q > 1 ряд (1.1) расходится;

3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.

Замечание: Ряд (1.1) будет расходиться и в том случае, когда

Пример 3.3. Исследовать на сходимость ряд

.

Применим предельный признак Даламбера.

В нашем случае .

Тогда

Следовательно, исходный ряд сходится.

Пример 3.4. Исследовать на сходимость ряд

Применим предельный признак Даламбера:

Следовательно, исходный ряд сходится.

Пример 3.5. Исследовать на сходимость ряд

Применим предельный признак Даламбера:

Следовательно, исходный ряд расходится.

Замечание. Применение предельного признака Даламбера к гармоническому ряду не дает ответа о сходимости этого ряда, т. к. для этого ряда

Теорема 3.3. (Предельный признак Коши3).

Пусть члены положительного ряда (1.1) таковы, что существует предел

Тогда: 1) при q < 1 ряд (1.1) сходится;

2) при q > 1 ряд (1.1) расходится;

3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.

Пример 3.6. Исследовать на сходимость ряд

Применим предельный признак Коши:

Следовательно, исходный ряд сходится.

Теорема 3.4. (Интегральный признак Коши).

Пусть функция f(x) непрерывная неотрицательная невозрастающая функция на промежутке

Тогда ряд и несобственный интеграл сходятся или расходятся одновременно.

Пример 3.7. Исследовать на сходимость гармонический ряд

Применим интегральный признак Коши.

В нашем случае функция удовлетворяет условию теоремы 3.4. Исследуем на сходимость несобственный интеграл

Имеем .

Несобственный интеграл расходится, следовательно, исходный гармонический ряд расходится также.

Пример 3.8. Исследовать на сходимость обобщенный гармонический ряд

Функция удовлетворяет условию теоремы 3.4.

Исследуем на сходимость несобственный интеграл

Рассмотрим следующие случаи:

1) пусть Тогда обобщенный гармонический ряд есть гармонический ряд, который расходится, как показано в примере 3.7.

2) пусть Тогда

Несобственный интеграл расходится, и, следовательно, ряд расходится;

3) пусть Тогда

Несобственный интеграл сходится, и, следовательно, ряд сходится.

Окончательно имеем

Замечания. 1. Обобщенный гармонический ряд будет расходиться при , т. к. в этом случае не выполняется необходимый признак сходимости: общий член ряда не стремится к нулю.

2. Обобщенный гармонический ряд удобно использовать при применении признака сравнения.

Пример 3.9. Исследовать на сходимость ряд

Члены ряда положительны и меньше соответствующих членов сходящегося обобщенного гармонического ряда

т. к. и параметр

Следовательно, исходный ряд сходится (по признаку сравнения).

Перейдем к рассмотрению рядов, члены которых могут быть как положительными, так и отрицательными.

4. Знакочередующиеся ряды. Признак сходимости Лейбница

Определение 4.1. Знакочередующимся рядом называется ряд, у которого любые рядом стоящие члены имеют противоположные знаки.

Такие ряды удобнее записывать в виде

(4.1)

или в виде

, (4.2)

где

Для определения сходимости знакочередующихся рядов существует весьма простой достаточный признак.

Теорема 4.1. (Достаточный признак сходимости Лейбница4).

Для того чтобы знакочередующийся ряд (4.1)((4.2)) сходился, достаточно, чтобы абсолютные значения его членов убывали и стремились к нулю при возрастании n.

Таким образом, если и то знакочередующийся ряд (4.1)((4.2)) сходится.

Пример 4.1. Ряд

(4.3)

сходятся, т. к. для него выполняются все условия признака сходимостиЛейбница.

5. Знакопеременные ряды

Рассмотрим числовые ряды

(5.1)

с произвольными членами, т. е. члены ряда могут быть как положительными, так и отрицательными. Такие ряды называются знакопеременными.

Образуем новый ряд, составленный из абсолютных величин (модулей) членов ряда (5.1), т. е. ряд

(5.2)

Теорема 5.1. Если ряд сходится, то сходится и исходный ряд

Вообще говоря, обратное утверждение неверно, т. е. из сходимости ряда (5.1) не следует сходимость ряда (5.2). Например, как было показано выше ряд сходится, в то время как ряд расходится.

Определение 5.1. Ряд (5.1) называется абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов.

Определение 5.2. Сходящийся ряд (5.1) называется условно сходящимся, если ряд (5.2) расходится.

Таким образом, ряд является абсолютно сходящимся.

Абсолютно сходящиеся ряды обладают тем свойством, что у них можно любым образом менять местами члены ряда. При такой перестановке будут получаться также абсолютно сходящиеся ряды, при этом сумма ряда не изменяется. Как указывалось в разделе 2, условно сходящиеся ряды таким свойством не обладают.

Вопросы для самопроверки

1. Как определяется сумма числового ряда?

2. Какой ряд называется сходящимся (расходящимся)?

3. Может ли предел общего члена сходящегося числового ряда равняться 3?

4. Что можно сказать о сходимости числового ряда с положительными членами , если ряд сходится и его сумма равна 6.

5. Предел какого выражения используется в предельном признаке Даламбера (Коши)?

6. Какой ряд называется знакочередующимся?

7. Каких условий достаточно для сходимости знакочередующегося ряда?

8. Какой ряд называется знакопеременным?

9. Будет ли сходящимся знакопеременный ряд, для которого ряд из модулей его членов сходится?

Упражнения

1. Найти сумму ряда:

а) ; б) в)

2. Исследовать сходимость ряда, пользуясь необходимым признаком и признаком сравнения:

а) б) в) ; г)

3. Исследовать сходимость ряда по предельному признаку Даламбера:

а) б) в) ; г) .

4. Исследовать сходимость ряда по предельному признаку Коши:

а) б) ; в) г) .

5. Исследовать, сходятся абсолютно или условно или расходятся знакопеременные ряды:

а) б) в)

г) .

Литература

1. Высшая математика: Общий курс: Учеб. – 2-е изд., перераб. / А. И. Яблонский, А. В. Кузнецов, Е. И. Шилкина и др.; Под общ. ред. С. А. Самаля. – Мн.: Выш. шк., 2000.– 351 с.

2. Марков Л. Н., Размыслович Г. П. Высшая математика. Часть 2. Основы математического анализа и элементы дифференциальных уравнений. – Мн.: Амалфея, 2003. – 352 с.

1 Риман Георг Фридрих Бернхард (1826 – 1866), немецкий математик.

2 Даламбер Жан Лерон (1717 – 1783), французский философ и математик, один из представителей французского просвещения XVIII века.

3 Коши Огюстен Луи (1789 – 1857), французский математик.

4 Лейбниц Готфрид Вильгельм (1646 – 1716), выдающийся немецкий философ и математик.

Характеристики

Тип файла
Документ
Размер
2,22 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее