62651 (597566), страница 2

Файл №597566 62651 (Налагодження пристроїв релейного захисту та автоматики) 2 страница62651 (597566) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

(2.4)

При заданому максимальному значенні числа виборок необхідно з вхідного аналогового сигналу виключити всі сигнал з частотою, вищою від . В протилежному випадку після зворотнього перетворення сигналу в ньому з’явиться сигнал пониженої частоти, який спотворить реальний вхідний сигнал. Тому на вході АЦП застосовують фільтр вищих гармонік з смугою пропускання не вище ніж частота . На схемі рис. 2.2 цей фільтр реалізований на основі RC елементів та .

В сучасних цифрових пристроях РЗА застосовують АЦП з частотою виборок до 2000 Гц, що відповідає 40 виборкам за період промислової частоти 50 Гц. Пристрої з такою частотою виборок дозволяють контролювати вхідний сигнал з частотою до 1000 Гц. Це відповідає 20 гармоніці при основній частоті 50 Гц.

2.2 Вхідні бінарні сигнали

Для роботи захисту, крім аналогових сигналів, необхідно мати також інформацію про бінарні сигнали від інших пристроїв релейного захисту та автоматики, положення комутаційних апаратів тощо. На практиці ці сигнали ще називають дискретними. Щоб не плутати ці сигнали з дискретними сигналами, які отримуються після квантування пристроєм АЦП аналогових сигналів в подальшому будемо їх називати бінарними. Наприклад, з метою реалізації функції АПВ, ПРВВ; необхідно мати інформацію про стан вимикача, на який діє даний захист, для прискорення дії даного захисту по команді від захисту шин необхідно мати інформацію від вихідних кіл захисту шин тощо. На рис. 2.1 бінарний сигнал від зовнішнього пристрою (умовно показаний у вигляді зовнішнього реле KL) подається на вхідний перетворювач бінарних сигналів TL1.

В сучасних цифрових пристроях бінарні сигнали від зовнішніх пристроїв подаються через оптрони. Оптрон представляє собою електронний ключ у вигляді транзистора VT (рис. 2.3), який керується світлодіодом VD. Під час протікання струму через світлодіод (струм через світлодіод починає протікати після замикання контакта KL), останній подає сигнал на базу транзистра VT, який спрацьовує і на його виході з’являється сигнал Uвих, який сигналізує про зміну стану бінарного входу. Час спрацювання такого перетворювача мізерний і складає долі мікросекунди.

Рис. 2.3. Схема вводу дискретного сигналу

Для організації протікання струму через світлодіод VD після спрацювання зовнішнього контакта KL використовується зовнішнє джерело оперативного струму, як правило напругою 220 В (зрідка 110 В). Це є недоліком даної схеми. Тому що навіть після вимкнення від оперативного струму зовнішнього пристрою, де встановлене реле KL, на контактах цього реле присутня напруга від оперативних кіл. Це є небезпечним для обслуговуючого персоналу. Тому для запобігання ураження електричним струмом обслуговуючого персоналу під час проведення планових робіт для ініціалізації бінарних входів на інших пристроях, які мають зв’язок з даним пристроєм, застосовують джерело оперативного струму з пониженою напругою, наприклад джерело напругою 24 В (рис. 2.4), яке реалізоване на інверторному перетворювачі UVZ.

Рис. 2.4. Схема вводу дискретного сигналу на пониженій напрузі

Але така схема має два суттєвих недоліки. По перше, вона менш надійна, ніж схема, наведена на рис. 2.3 за рахунок наявності інверторного перетворювача UVZ. Технічно це досить складний ннапівпровідниковий елемент, який попередньо здійснює пертворення постійного струму напругою 220 В в змінну напругу підвищеної частоти, наприклад, 400 Гц. Після цього здійснюється перетворення цієї змінної напруги у постійну напругу 24 В з відповідною стабілізацією. Технічна реалізація такого складного перетворення понижує надійність функціювання перетворювача та схеми в цілому. Як показав досвід експлуатації схем з такими перетворювачами, наприклад панелей серії ПДЕ, найбільш ненадійним елементом таких схем є блоки живлення, які реалізовані на основі саме інверторних перетворювачів.

Крім того, застосування пониженої напруги в колах, де комутуються контакти реле KL (рис. 2.4), може приводити до незамикання кола контактами реле KL. Це пояснюється наступним чином. З часом в процесі експуатації поверхні цих контактів окислюються і після їх замикання стум в колі через ізолюючий окислений шар протікати не буде – схема працювати не буде. У випадку ж застосування напруги 220 В після замикання окислених контактів окислений шар буде пробиватись під дією цієї підвищеної напруги і в колі буде протікати струм, достатній для спрацювання схеми контролю бінарних вхідних сигналів (рис. 2.3).

Під час реалізації схеми вводу бінарного сигналу на основі оптрона, який споживає незначний струм (до 5 мА) слід пам’ятати, що можливе хибне спрацювання такої схеми за рахунок паразитних ємностей (рис. 2.5) , яка є між кабелями, які здійснюють зв’язок між окремими пристроями.

Рис. 2.5.Хибне спрацювання дискретного входу

Наприклад, реле KL2 з’єднане з іншим пристроєм за допомогою довгого кабеля. Так само довгим кабелем з’єднане реле KL, стан контактів якого контролюється оптроном VD (рис. 2.5). Ці кабелі прокладені поряд в одному каналі. Тому між ними є електричний зв’язок за рахунок паразитної ємності СП (на рис. 5 для простоти показана результуюча ємність між двома кабелями, насправді ця ємність є розподілена вздовж спільної ділянки між ними). Під час спрацювання ключа S в перехідному процесі через паразитну ємність СП в колі оптрона з’являється сигнал, який може привести до його спрацювання. Це спрацювання буде хибним, тому що згідно схеми оптрон VD повинен контролювати стан контакта реле KL а не положення ключа S. Про те, цей сигнал буде тільки під час перехідного процесу, пов’язаного з комутацією ключа S. Тому, якщо на виході схеми поставити елемент затримки часу DT порядка на 3 мс, можна відлагодити дану схему від хибної роботи.

2.3 Перетворення та зберігання інформації в цифровому пристрої РЗА

Цифрові сигнали від АЦП поступають в процесор, де вони обробляються за певним алгоритмом, реалізованим у вигляді програми. Сама програма зберігається в постійному запам‘ятовуючому пристрої (ПЗП) (ROM – Read Only Memory – лише для читання). Це є перепрограмовуваний постійний запам‘ятовуючий пристрій з енергонезалежною пам‘ятю, тобто інформація в ньому зберігається навіть тоді, коли пристрій є вимкненим від зовнішнього живлення.

Для зберігання результатів проміжних обчислень використовують оперативний запам‘ятовуючий пристрій (ОЗП) ( RAM – Random Access Memory – пам‘ять з „випадковим” доступом). ОЗП має високу швидкодію, але не зберігає інформації після вимкнення зовнішнього живлення.

Уставки спрацювання захистів, які потрібно змінювати в процесі експлуатації, зберігаються в постійному перепрограмовуваному запам‘ятовуючому пристрої (ППЗП), який допускає багатократну зміну уставок. При цьому інформація про уставки зберігається після зникнення зовнішнього живлення.

На передній панелі пристрою розміщений пульт управління (клавіатура), при допомозі якого можна задавати необхідний режим пристрою та змінювати уставки спрацювання.

Результати роботи пристрою та уставки відображаються на рідкокристалічному індикаторі, який також знаходиться на передній панелі пристрою.

Після спрацювання пристрою замикаються вихідні контакти реле KL1 та KL2.

3. Вибір параметрів спрацювання дистанційних захистів фірми SIEMENS

В сучасних цифрових захистах використовуються в основному характеристики, форма яких представлена на рис. 3.1. Методика розрахунку таких характеристик дещо відрізняється від методики розрахунку уставок для традиційних дистанційних захистів, виконаних не на цифровому принципі. Для прикладу розглянемо методику розрахунку параметрів спрацювання дистанційного захисту 7SA502 фірми SIEMENS.

На рис. 3.1 наведені характеристики вимірних органів дистанційного захисту 7SA502. На цьому рисунку наведені форми характеристик першої, другої, третьої ступеней, пускової зони та зони хитань. Призначення зони хитань розглянемо нижче.

Рис. 3.1. Характеристики вимірних органів дистанційного захисту фірми SIEMENS

Розрахунок уставок спрацювання дистанційного захисту починається з відображення на рисунку гальванічно з’єднаних елементів електричної мережі , де буде встановлений дистанційний захист. На цьому рисунку наносяться довжини ділянок ліній з їх первинними реактивними опорами ( Х Ом/фазу). Реактивні опори Х ліній є визначальними для визначення зон дії окремих ступеней дистанційного захисту. Тому уставки спрацювання відображаються саме для реактивних складових опору (рис. 3.2).

Рис. 3.2. Зони дії окремих ступеней дистанційного захисту

Розглянемо, як визначається уставки спрацювання – реактивний та активний опори спрацювання та час для захисту лінії без відгалужень. Окремо визначаються уставки за реактивним опором, окремо – за активним.

Розрахунок уставок спрацювання за реактивним опором

I –а ступінь

Перша ступінь вибирається з умови забезпечення селективності роботи захисту (неспрацювання під час к.з. на суміжній лінії Л2) і захищає порядку 85% довжини лінії Л1. Час її спрацювання складає 0,02 – 0.04 с. Значення первинного реактивного опору першої ступені визначається з виразу:

(3.1)

де – реактивна складова опору лінії Л1.

I –а ступінь після АПВ

Перша ступінь з дією після АПВ призначена для захисту лінії, коли дія АПВ є неуспішною і пошкодження слід вимикати повторно, але з меншою витримкою часу – з часом дії першої ступені. З цією метою розширюється зона дії першої ступені. Вона охоплює порядку 120% її довжини. Значення первинного опору спрацювання цієї ступені визначається з виразу:

(3.2)

II –а ступінь

Умовою вибору опору спрацювання II-ї ступені є умова узгодження з роботою I-ї ступені дистанційного захисту суміжного елемента (лінії Л2) – зона дії II-ї ступені не повинна виходити за межі другої лінії, а з врахуванням забезпечення селективності роботи (щоб вона не спрацьовувала під час к.з. в кінці лінії Л2) ‑ за межі роботи I-ї ступені захисту суміжного елемента (лінії Л2). Тому вона повинна охоплювати повністю лінію Л1 та порядку 80% довжини суміжної лінії – лінії Л2:

(3.3)

де – реактивна складова опору лінії Л2.

Час спрацювання другої ступені вибирається на ступінь селективності більшим часу спрацювання першої ступені захисту суміжного елементу – лінії Л2:

(3.4)

де – ступінь селективності.

Ступінь селективності повинна враховувати час спрацювання вимикача Q2 суміжного елемента (лінії Л2), часу повернення вихідних кіл захисту суміжного елемента з врахуванням розкиду їхніх часових характеристик.

Час спрацювання другої ступені становить порядку 0,3 – 0,4 сек.

III –а ступінь

Третя ступінь дистанційного захисту виконує функцію ближнього резервування – резервує роботу першої та другої ступеней. Крім того, вона може виконувати функцію дальнього резервування – резервувати роботу захистів суміжного елемента – лінії Л2. Тому вона повинна повністю охоплювати як лінію Л1, так і лінію Л2. Для забезпечення надійності дальнього резервування уставка спрацювання третьої ступені вибирається з умови охоплення ділянки третьої лінії Л3 – порядку 80% довжини лінії Л3. Виходячи з цих умов уставка спрацювання третьої ступені визначається з виразу:

Характеристики

Тип файла
Документ
Размер
9,28 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее