49656 (597459), страница 6

Файл №597459 49656 (Захист інформації) 6 страница49656 (597459) страница 62016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Поряд із багатоканальними системами супутникового зв'язку типу INTELSAT широко використовуються мережі зв'язку з малими станціями VSAT (Very Small Aperture Terminal термінал із малою апертурою антени), що забезпечують малоканальний (персональний) супутниковий зв'язок. Обмін даними через супутник ретранслятор забезпечується з застосуванням ефективних засобів технічного захисту. У мережах малих станцій, що впроваджуються в Росії, часто застосовується алгоритм, обумовлений стандартом ГОСТСТАНДАРТ 2814789 [5, 6, 7]. Він перевершує стандарт DES по ряду показників, проте потребує великих обчислювальних витрат.

2. Математичні основи шифрування-дешифрування діскретних повідомлень

2.1. Прийняті позначення

М - алфавіт джерела повідомлення, - об’єм алфавіта джерела, - послідовність довжини n із символів алфавіта джерела повідомлення,

- послідовність із символів алфавіта джерела повідомлення,

М - символи алфавіта джерела повідомлення,

- численність усіх можливих послідовностей довжини n,

К - алфавіт ключів (ключових даних), - об’єм алфавіта ключа,

- послідовність довжини N із символів алфавіта ключа,

- послідовність із символів алфавіта ключа,

К - символ алфавіта ключа,

- численність усіх можливих послідовностей ключа довжиной N,

- об’єм численності усіх можливих послідовностей ключів довжини N,

- ключова послідовність, яку використовують для шифрування,

- ключова послідовність, яку використовують для дешифрування,

Е - алфавіт джерела кріптограми, - об’єм алфавіта кріптограми,

- послідовність довжини n із символів алфавіта Е,

- послідовність із символів алфавіта кріптограми,

Е - символ алфавіта кріптограми,

- численність усіх можливих послідовностей кріптограми довжиной n,

- об’єм численності усіх можливих послідовностей довжини n,

- додавання по модулю 2 (mod2).

2.2. Модель шифрування-дешифрування діскретних повідомлень

Будемо далі, як правило, розглядати шифрування-дешифрування так званих діскретних повідомлень, які можуть бути представлені сигналами, які мають кінцеве число станів. Це дані, печатні тексти, а також речові сигнали та зображення, якщо вони попередньо перетворені у діскретні (цифрові) сигнали. У випадку аналогового сигнала (як правило) використовують інші методи, які будуть розглядатися далі.

Математичною моделлю системи шифрування-дешифрування називають пару функцій

(2.1)

які перетворюють повідомлення у кріптограму за допомогою ключа шифрування та навпаки, кріптограму у повідомлення за допомогою ключа дешифрування . Обидві функції, які задають кріптосистему, повинні задовольнити таким вимогам:

функція f(,) та g(,) при відомих аргементах розраховуються просто.

функція g( ,?) при невідомому ключі розраховується складно.

Передбачається, що ключ дешифрування невідомий нелегальним користувачам, хоч вони і можуть знати функції f(,) та g(,), а також ключ шифрування . (Остання умова складає так званий принцип Казиски).

Слід розрізняти три основних вида нападу (атаки) опонентів на кріптограму:

Напад при відомій кріптограмі .

Напад при відомій частині кріптограми та повідомлення , яка відповідає певній частині криптограми, яку отримали при використанні того ж самого ключа (атака при частково відомому відкритому повідомлені).

Напад при відомій криптограмі та спеціально вибраній частині повідомлення, яка відповідає цій частині кріптограми, яку отримали на тому ж ключі (атака з частково вибраними відкритими повідомленнями).

Сучасні кріптосистеми важаються стійкими, якщо вони стійки до всіх трьох атак.

Для кріптосистем, які шифрують повідомлення з невисокими вимогами до ймовірності помилки при передачі (цифрова реч, цифрове зображення), необхідно дати четверту, додаткову вимогу.

Дешифрування після передачі кріптограми по каналам зі спотвореннями не повинно збільшувати число помилок у порівнянні з тим числом помилок, які виникли у каналі зв’язку внаслідок спотворень, іншими словами не повинно відбуватися розмноження помилок.

Пояснемо суть поняття розмноження помилок. Нехай при передачі кріптограми по каналу зв’язку виникли помилки (див. мал.2.1).

,t

Мал.2.1. Система шифрування-дешифрування.

Місцезнаходження та величина помилок визначаються вектором помилок . При двоїчній системі передачі прийнята криптограма буде мати вигляд , де знак означає побітне додавання по модуля два, а загальне число помилок t дорівнює нормі векторів помилок , тобто t= . Число помилок t’ у розшифрованому повідомлені підраховується як

(2.2)

Помилки не розмножуються при умові, що t’=t.

Якщо ключ шифрування дорівнює ключу дешифрування, тобто

= = , (2.3)

то система називається сіметричною (одноключовою). Тоді у пункти шифрування та дешифрування повинні бути доставлені однакові ключі. Якщо , то система шифрування називається несіметричною (двоключовою). У цьому випадку ключ доставляється у пункт шифрування, а - у пункт дешифрування. Оба ключа повинні бути зв’язані функціональною залежністю =( ), але такою, щоб відомому ключу шифрування неможливо було б відтворити ключ дешифрування. Для несиметричних систем шифрування () повинна бути складно розрахуємою функцією. У такій системі є можливість секретним чином розподіляти серед законних користувачів тільки їх ключі дешифрування, а ключі шифрування зробити відкритими та оприлюднити, наприклад у загальнодоступному довіднику. Розглядаєма система тому називається системою з відкритим (загальнодоступним) ключом . Кріптосистема з загальнодоступним ключом (Public key criptosystem) була вперше запропанована Діффі та Хелманом у 1978р.

У цій частині курсу будуть розглядатися тільки одноключові системи.


2.3 Особливі крітерії стійкості кріптосистем

Існують два основних класа стійкості кріптосистем:

Ідеально (безумовно) стійкі, або досконалі системи, для яких стійкість кріптоаналізу (дешифрування) без знання ключа не залежить від розрахункової потужності опонента. Ми будемо називати їх теоретично недешифруємими.

Розрахунково стійкі системи, у якіх стійкість кріптоаналізу залежить від розрахункової потужності опонента.

Система є теоретично недешифруємою, якщо будь-яка криптограма , отримана у ній, при відсутності знання про ключ , не містить ніяких відомостей про повідомлення , зашифроване у цю кріптограму. У відповідності з терією інформації це має місце, коли (при відсутності відомостей про ключ) дорівнює нулю взаємна інформація між численністю повідомлень М та численністю кріптограм Е, тобто І(Е, М) =0, де І(Е, М) =Н(М) - Н(М/Е), Н(м) - ентропія джерела повідомлень, Н(М/Е) - умовна ентропія численності повідомлень М при заданій численності криптограм Е.

При ідеальному шифруванні фактично виникає "обрив канала" від легальних користувачів до опонентів.

Равносильне визначення ідеального шифрування встановлює незалежність будь-якої пари та від численності повідомлень та численності кріптограм, тобто тоді, коли умовна ймовірність передачі визначеного повідомлення при отриманні визначеної криптограми залишається завжди рівною апріорній ймовірності передачі цього повідомлення.

(2.4)

З визначення ТНДШ видно, що найкращій засіб кріптоаналізу для такої системи при невідомому ключі дешифрування складається в ігноруванні кріптограми та в випадковому угадуванні повідомлень по відомій апріорно ймовірності.

Розглянемо приклад побудови теоретично недешифруємих систем (див. мал.2.2).

Припустимо, що повідомлення є двоїчною послідовністю довжини n. Тоді можна формувати кріптограму як двоїчну послідовність такої ж довжини n за наступним правилом:

(2.5)

використовуючи побітне додавання з ключем , який також є двоїчною послідовністю довжини n.

Наприклад,

011001101111010001110

010011110101100110101

___________________________

001010011010110111011

При відомому ключі , який повинен бути переданий на сторону прийому будь-яким секретним чином, повідомлення легко відновлюється по тій же формулі, по якій прводилося шифрування

(2.6)

Покажемо, що якщо двоїчні елементи ключа вибираються взіємнонезалежними та равноймовірними, то цього достатньо, щоб описана вище система була ТНДШ.

Елементи ключа вибирають незалежно, тому достатньо довести рівність Р(МЕ) =Р(М) для одного елемента. По формулі Бейеса

(2.7)

Із графа, який представлено на мал.2.3. і який показує можливості шифрування при рівноймовірних символах ключа слідчить, що , .

Звідси р(Е) =р(М=0) р(ЕМ=0) +р(М=1) р(ЕМ=1) =0.5(р(М=0) +р(М=1)) = 0.5 і отимаємо

(2.8)

Останнє рівняння і є умовою теоретичної недешифруємості.

Характеристики

Тип файла
Документ
Размер
7,1 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6988
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее
{user_main_secret_data}