47051 (597312), страница 2

Файл №597312 47051 (Иерархическое управление большими системами) 2 страница47051 (597312) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

4.3 Иерархическое управление линейными системами.

В этом разделе формулировка согласования цели для многоуровневых систем применяется к большим линейным непрерывным системам в контексте управления по разомкнутому циклу. Кроме подхода с балансом взаимодействия обсуждается так же другая схема, известная как метод наблюдения взаимодействия.

Пусть большая динамическая взаимосвязанная система представлена в виде следующего уравнения состояния:

(4.3.1)

где х и u – это векторы состояния (n x l) и управления (m x l). Принято считать, что система может быть разложена на N взаимосвязанных подсистем si, i=1,…,N, и управление состояния i-й подсистемы может быть представлено как:

, (4.3.2)

где x, u, xi, ui – имеют размерность n, m, ni, mi, соответственно, а gi – представляет взаимосвязи в i-й подсистеме, и:

(4.3.3)

(4.3.4)

Задачей оптимального управления является поиск управляющих векторов u1,…,uN, таких, что оценочная функция

(4.3.5)

минимизирует объект (4.3.1) и подходящая область:

(4.3.6)

Учитывая возможность декомпозиции системы (4.3.1) на N соединенных подсистем (4.3.2), можно разложить ценовую функцию (4.3.6) и взаимосвязи gi(x,t) (4.3.2), как:

(4.3.7)

(4.3.8)

(4.3.9)

где zi – вектор содержащий линейную (или нелинейную) комбинацию состояний N подсистем. Исходя из описанных предположений, задача оптимального управления большой системой может быть записана как:

(4.3.10)

(4.3.11)

(4.3.12)

(4.3.13)

Эта проблема, известная как иерархическое управление, была решена двухуровневой оптимизацией статистической задачи в предыдущем параграфе. Применение двухуровневого согласования цели для больших линейных систем описано далее.

4.3.1 Двухуровневое согласование линейных систем

Рассмотрим большую линейную стационарную систему:

(4.3.14)

Система может быть декомпозирована как:

(4.3.15)

где вектор взаимодействия (k x l), записанный как:

(4.3.16)

это линейная комбинация состояний N-1 подсистем, и Gij – это матрица ni x nj. Первоначальная задача оптимального управления системой сводится к оптимизации N подсистем, которые удовлетворяют (4.3.15)-(4.3.16) и минимизируют:

(4.3.17)

где Qi – это неотрицательно определенная матрица ni x ni, Ri и Vi – это положительно определенные матрицы mi x mi и ki x ki , где

(4.3.18)

Физическая интерпретация последнего слагаемого в интеграле (4.3.17) – это неточность в данной точке. Фактически, определяя это слагаемое, как будет видно дальше, мы избегаем выраженных управлений. «Согласование цели» и «баланс взаимодействия» использованные у Mesarvic и др. (1970), так же известны как задача «linear-quadratic» у Pearson (1971) и передача у Singh (1980) и Jamshidi (1983).

В этой декомпозиции большой взаимосвязанной линейной системы общие коэффициенты связи между ее N подсистемами – это переменная взаимосвязи zi(t), которые, вместе с (4.3.15)-(4.3.16), образуют ограничение связи. Эта формулировка называется глобальной и обозначается SG. Можно сделать следующее допущение. Глобальная проблема SG заменяется группой N подзадач, соединенных вместе через вектор параметров a=(a1,…,aN) и обозначенных si(a), i=1,…,N. Другими словами, глобальная системная задача SG включена в группу подсистемных проблем si(a) через внутренний параметр (Sandell и др., 1978) таким образом, что для определенного значения a*, подсистемы Si(a*), и i=1,…,N, дают желаемое решение для SG. Используя обозначения иерархического управления, эта внутренняя идея это и есть понятие согласования, но используя терминологию математического программирования задач, она называется основной проблемой (Geoffrion, 1970). На рисунке 4.6 изображена двухуровневая структура управления большой системой. Под этой стратегией, на i-й итерации каждый местный контроллер i получает от координатора (второй уровень иерархии), решает и передает (сообщает) некоторую функцию этого решения координатору.

Координатор, в свою очередь, оценивает следующее значение , т.е.:

(4.3.19)

где ei – это l-й размер шага итерации, и новый компонент dl, как мы вскоре увидим, часто берется за функцию ошибка взаимодействия:

(4.3.20)

Внутреннюю переменную взаимодействия zi(*) в (4.3.20) можно считать частью управляющей переменной доступной для контроллера i, в этом случае вектор параметра a(t) является набором двойных переменных или множителем Лагранжа, который соответствует ограничениям уравнения взаимодействия (4.3.16). Фундаментальная идея, которая стоит за этим подходом должна преобразовать задачу поиска минимума первоначальной системы в более легкую задачу поиска максимума, решение которой можно получить посредством двухуровневой итеративной схемы. Которая обсуждалась выше.

Введем двойную функцию

(4.3.21)

к объекту (4.3.15), где Лагранжиан L(*) определен как:

(4.3.22)

где вектор параметра а состоит из k множителей Лагранжа. Таким образом, первоначально ограниченная (взаимодействием подсистем) оптимизационная задача превращается в неограниченную, другими словами ограничение (4.3.16) удовлетворяется через определение набора множителей Лагранжа ai, i=1,…,k. В таких случаях, когда функции ограничений выпуклые, теорема сильной двойственности Лагранжа (Geoffrion, 1971a, b; Singh, 1980) показывает, что

(4.3.23)

определяя, что минимизация J в (4.3.17) для объекта (4.3.15)-(4.3.16) эквивалентна максимуму двойной функции q(a) в (4.3.21) по параметру a. Чтобы облегчить решение этой задачи, замечено, что для определенного набора этих множителей Лагранжа а=а*, Лагранжиан можно переписать в виде:

(4.3.24)

который обнаруживает, что декомпозицию применяют к Лагранжиану таким образом, что, подлагранжиан Li существует для каждой подсистемы. Каждая подсистема будет стремиться минимизировать свой собственный подлагранжиан Li, как определенно в (4.3.24) для объекта (4.3.15) и используя множители Лагранжа a*, которые считаются известными функциями на первом уровне иерархии. Результат каждой такой минимизации позволит определить двойственную функцию q(a*) в (4.3.21). На втором уровне, на котором решение всех подсистем первого уровня известны, значение q(a*) будет изменено типичной неограниченной оптимизацией, например метод Ньютона, градиента или скоростного градиента. Градиентные методы используются потому, что градиент q(a) определяется:

(4.3.25)

это ошибки взаимодействия подсистем, которые известны из решений первого уровня и определяет градиент f по х. На втором уровне вектор a изменяется по формуле (4.3.19) и рисунку 4.6. Если применяется градиентный метод (с крутым склоном), вектор dl в (4.3.19) является просто l-й итеративной ошибкой взаимодействия el(t). Однако, для повышения точности вычислений определим скоростной градиент как:

(4.3.26)

где

(4.3.27)

и d0=e0. Как только вектор ошибки e(t) достигает нуля, появляется оптимальное иерархическое управление s. Ниже дана пошаговая процедура вычисления для метода согласования цели иерархического управления.

Алгоритм 4.1. Метод согласования цели.

Шаг 1. Для каждой подсистемы первого уровня, минимизируем каждый подлагранжиан Li, используя известный множитель Лагранжа a=a*, так как подсистемы линейные, может быть использовано уравнение Риккати. Сохраним решение. (Читатели не знакомые с уравнением Риккати могут прочитать раздел 4.3.2, метод прогнозирования взаимодействия).

Шаг 2. На втором уровне используется итеративный метод скоростного градиента, похожий на (4.3.26)-(4.3.27), чтобы изменить траектории a*(t) как в (4.3.19). Как только общая ошибка взаимодействия системы будет нормализована из

(4.3.28)

и будет достаточно мала, будет достигнуто оптимальное решение для системы. Здесь – размер шага интегрирования.

Два примера ниже иллюстрируют метод согласования цели или баланса взаимодействия. Первый пример, который был предложен Pearson (1971), и позже рассмотрен Singh (1980) и Jamshidi (1983), использован в изменненой форме. Второй пример показывает модель многоколенной задачи загрязнения реки (Beck, 1974; Singh, 1975). Полная оценка многоуровневых методов дана в секции 4.6, а описание нелинейных многоуровневых нелинейных систем в главе 6. Две альтернативы решения этого иерархического управления основаны на расширенных рядах Тейлора и Чебышева в разделе 4.6.

Пример 4.3.1. Рассмотрим систему 12-го порядка введенную Pearson (1971) и показанную на рис 4.7 с уравнением состояния:

(4.3.29)

и квадратичной функцией оценки:

(4.3.30)

с

где

Вектор выхода системы представлен как:

(4.3.31)

Необходимо найти стратегию иерархического управления по методу баланса взаимодействий (согласования цели).

Решение: Из схемы системы, показанной на рисунке 4.7 (пунктирные линии) и матрицы состояния (4.3.29) ясно, что есть четыре подсистемы третьего порядка соединенных через шесть ограничивающих уравнений (по числу пунктирных линий на рис. 4.7):

(4.3.32)

где ei, i=1,…,6 представляет ошибки взаимодействия между четырех подсистемами. Задачи подсистем первого уровня были решены через набор из четырех матричных уравнений Риккати третьего порядка:

(4.3.33)

где Ki(t) – это положительно определенная матрица Риккати ni x ni и . Методы «без взаимодействия» и «удвоения» решают дифференциальное матричное уравнение Риккати, предложены Davison и Maki в 1973 и рассмотрены Jamshidi в 1980,были использованы для компьютерного решения (4.3.33). Уравнения состояния подсистем были решены стандартным методом Рунге-Кутта четвертого порядка, а итерации второго уровня были выполнены по схеме скоростного градиента (4.3.19), (4.3.26)-(4.3.27), используя кубическую сплайн интерполяцию (Hewlett-Packard, 1979) для оценки подходящих численных интегралов. Размер шага был выбран =0.1, как и в более ранних рассмотрениях этого примера (Pearson, 1971; Singh, 1980). Алгоритм скоростного градиента позволил уменьшить ошибку с 1 до за шесть итераций, как показано на рисунке 4.8, который был в тесной связи с результатами предыдущих исследований модифицированной версии системы (4.3.29), полученными Singh (1980). Рассмотрим второй пример.

Пример 4.3.2. Рассмотрим двухколенную модель задачи управления загрязнением реки.

(4.3.34)

где каждое колено (подсистема) реки имеет два состояния – x1 – это концентрация биохимической потребности в кислороде (БПК) (биохимическая потребность в кислороде представляет собой уровень содержания кислорода полученного в результате распада органического вещества) и х2 – это концентрация растворенного кислорода (РК) – и управление u1 – это БПК вод втекающих в реку. Для квадратичной функции оценки

(4.3.35)

С Q=diag(2,4,2,4) и R=diag(2,2), необходимо найти оптимальное управление, которое оптимизирует (4.3.35) для объекта (4.3.34) при x(0)=(11 -11)T.

Решение: Как видно из (4.3.34)-(4.3.35), две задачи первого уровня идентичны, и матричное уравнение Риккати второго порядка решается интегрированием (4.3.33) используя метод Рунге-Кутта четвертого порядка при =0.1. Ошибка взаимодействия в этом примере снижена до за 15 итераций, как показано на рисунке 4.9. Оптимальные концентрации БПК и РК двух колен реки показаны на рисунке 4.10.

Характеристики

Тип файла
Документ
Размер
2,74 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее