4732 (596779), страница 5
Текст из файла (страница 5)
где — коэффициент, зависящий от скорости и температуры воздушного потока над поверхностью испарения (табл. 5.26); М- молекулярная масса жидкости, кг/моль; Р нас. — по формуле (5.61), кПа.
Значение коэффициента
Таблица 5.26
Скорость воздушного потока, м/с | Температура в помещении t, 0C | ||||
10 | 15 | 20 | 30 | 35 | |
0 | 1,0 | 1,0 | 1,0 | 1,0 | 1,0 |
0, 1 | 3,0 | 2,6 | 2,4 | 1,8 | 1,6 |
0, 2 | 4,6 | 3,8 | 3,5 | 2,4 | 2,3 |
0, 5 | 6,6 | 5,7 | 5,4 | 3,6 | 3,2 |
1, 0 | 10,0 | 8,7 | 7,7 | 5,6 | 4,6 |
Избыточное давление взрыва Рф (кПа) для индивидуальный горючих веществ, состоящих из атомов углерода, водорода, кислорода, хлора, брома и фтора, определяется по формуле
(5.69)
где: — максимальное давление взрыва стехиометрической газо- или паровоздушной смеси в замкнутом объеме, определяемой по справочным данным (при отсутствии данных допускается принимать равным 900 кПа);
— начальное давление, принимаемое равным 101,3 кПа; m — масса горючего газа или паров ЛВЖ в помещении, кг; Z — коэффициент участия горючего во взрыве, принимаемый равным 1 для водорода, 0,5 — для других горючих газов, 0,3 — для паров ЛВЖ и ГЖ; Vсв — свободный объем помещения, м3 (можно принять равным 80% помещения);
— плотность газа или пара при расчетной температуре, кг/м3 ;
— коэффициент, учитывающий негерметичность помещения и неадиабатность процессов горения, принимаемый равным 3; С СТХ – стехиометрическая концентрация горючего, % об., вычисляемая по формуле
(5.70)
где стехиометрический коэффициент кислорода в реакции горения
число атомов углерода, водорода, кислорода и галоидов в молекуле горючего).
Прогнозирование и оценка обстановки при авариях, сопровождающихся пожарами
Основным поражающим факторам пожаров является термическое воздействие, обусловленное тепловым излучением пламени.
Термическое воздействие определяется величиной плотности потока поглощенного излучения qПОГЛ (кВт/м2) и временем теплового излучения (с).
Плотность потока поглощенного излучения qПОГЛ связана с плотностью потока падающего излучения qПАД соотношением qПОГЛ = qПАД, где
- степень черноты (поглощательная способность) тепловоспринимающей поверхности. Чем ниже степень черноты (больше отражательная способность), тем меньше при прочих равных условия величина qПОГЛ (далее q, кВт/м2).
Человек ощущает сильную (едва переносимую) боль, когда температура верхнего слоя кожи превышает 45 °С. Время достижения «порога боли» (с) определяется по формуле
(5.71)
Различают три степени термического ожога кожи человека (табл. 5.27).
Характеристики ожогов кожи человека
Таблица 5.27
Степень ожога | Повреждаемый слой | Характеристика | Доза воздействия, кДж/м2 |
I | Эпидермис | Покраснения кожи | Менее 42 |
II | Дерма | Волдыри | 42-84 |
III | Подкожный слой | Летальный исход при поражении более 50% кожи | Более 84 |
Время воспламенения горючих материалов (с) при воздействии на них теплового потока плотностью q (кВт/м2) определяется по формуле
(5.72)
где qкр — критическая плотность теплового потока, кВт/м2; А, n — константы для конкретных материалов (например, для древесины A = 4300, n = 1,61).
Значения qкр для разных материалов и результаты расчета по формуле (5.72) приведены в табл. П.6.
Особенно опасным является нагрев резервуаров с нефтепродуктами, которые могут воспламеняться при воздействии теплового излучения (табл. 5.28).
Время воспламенения резервуара с нефтепродуктами в зависимости от величины плотности потока теплового излучения q
Таблица 5.28
q, кВт/м2 | 34,9 | 27,6 | 24,8 | 21,4 | 19,9 | 19,5 |
| 5 | 10 | 15 | 20 | 29 | Более 30 |
При применении вероятностного подхода к определению поражающего фактора теплового воздействия на человека значения Рпор определяют по табл. П. 1 с использованием для случая летального исхода при термическом поражении следующее выражение для пробит-функции Рr:
(5.73)
Время термического воздействия (с) для случаев пожара разлития и горения здания (сооружения, штабеля и т. п.) равно
(5.74)
где — характерное время обнаружения пожара (допускается принимать 5 с); х — расстояние от места расположения человека до зоны, где плотность потока теплового излучения не превышает 4 кВт/м2, м; и — скорость движения человека (допускается принимать 5 м/с).
Для случая огненного шара время термического воздействия принимается равным времени существования огненного шара.
Пожар разлития
При нарушении герметичности сосуда, содержащего сжиженный горючий газ или жидкость, часть (или вся) жидкости может заполнить поддон или обваловку, растечься по
поверхности грунта или заполнить какую-либо естественную впадину.
Если поддон или обваловка имеют вертикальный внутренний откос, то глубину заполнения h (м) можно найти по формуле:
(5.75)
где масса и плотность разлившейся жидкости; FПОД –площадь поддона.
При авариях в системах, не имеющих защитных ограждений, происходит растекание жидкости по грунту и (или) заполнение естественных впадин. Обычно при растекании на грунт площадь разлива ограничена естественными и искусственно созданными границами (дороги, дренажные канавы и т. п.), а если такая информация отсутствует, то принимается толщина разлившегося слоя, равной h = 0,05 м, и определяют площадь разлива Fpaз (м2) по формуле
(5.76)
Отличительной чертой пожаров разлития является «накрытие» (рис. 5.6.) с подветренной стороны, которое может составлять 25—50% диаметра обвалования
Пламя пожара разлития при расчете представляется в виде наклоненного по направлению ветра цилиндра конечного размера (см. рис. 5.6), причем угол наклона зависит от безразмерной скорости ветра WВ:
(5.77)
Геометрические параметры факела пожара разлития находятся по формуле Томаса:
(5.78)
где Wв = — безразмерная скорость ветра; mВЫГ — массовая скорость выгорания, кг/(м2 * с);
— плотность пара и воздуха, соответственно, кг/м3 ; g — ускорение силы тяжести, м/с2; D — диаметр зеркала разлива, м;
— скорость ветра, м/с.
Эмпирические коэффициенты по формуле Томаса (а = 55; b = 0,67 и с = — 0,21) получены по результатам экспериментов, выполненных для широкого диапазона изменения параметров:
Скорость выгорания жидкостей определяют, как правило, экспериментально. Для экспертной оценки скорости выгорания mВЫГ (кг/(м2 * с)) можно воспользоваться эмпирической формулой
(5.79)
где — плотность жидкости, кг/м3;
— низшая теплота сгорания топлива, Дж/кг; LИСП — скрытая теплота испарения жидкости, Дж/кг, С — коэффициент пропорциональности, значение которого, равное 1,25 *10-6 м/с, получено путем обработки многочисленных экспериментальных данных по выгоранию большинства органических жидкостей и их смесей (рис. 5.7).
Плотность теплового потока, падающего на элементарную площадку, расположенную на уровне грунта (см. рис. 5.6), (кВт/м2) вычисляется по формуле:
(5.80)
где — угловой коэффициент излучения с площадки на боковой поверхности пламени пожара разлива на единичную площадку, расположенную на уровне грунта (рис. 5.6), определяемый по графику на рис. 5.8; qСОБ — средняя по поверхности плотность потока собственного излучения пламени кВт/м.3
Для ориентировочных расчетов можно принять следующие значения qСОБ (кВт/м2):
Сжиженный природный газ (метан) – 150…170
Сжиженный нефтяной газ – 50…60
Бензин – 120…140
Нефть – 60…80
Мазут – 50…70
Керосин – 80…00
Горение парогазовоздушного облака
Крупномасштабное диффузионное горение парогазовоздушного (ПГВ) облака, реализуемое при разгерметизации резервуара с горючей жидкостью или газом под давлением, носит название «огненный шар». Плотность теплового потока, падающего с поверхности «огненного шара» на элементарную площадку на поверхности мишени qпад .(кВт/м2), равна
qпад =qсоб ехр
,
где qсоб- платность потока собственного излучения «огненного шара», кВт/м2 (допускается принимать равной 450 кВт/м2);
- угловой коэффициент излучения с «огненного шара» на единую площадку на облучаемой поверхности; Х – расстояние от точки на поверхности земли непосредственно под центром «огненного шара» до облучаемого объекта, м; Н – высота центра «огненного шара», м, которую допускается принимать равной 0,5Dэф – эффективный диаметр «огненного шара», м, определяемый по формуле
Dэф= 5,33m0,327,
Где m – масса горючего вещества, кг.
Угловой коэффициент излучения с «огненного шара» на единичную площадку на облучаемой поверхности при Н=0,5Dэф определяется по формуле
.