151787 (594713), страница 2
Текст из файла (страница 2)
где оператор полной энергии системы. Для одномерного случая
Общее решение уравнения (1) формально можно записать в виде
(3.2)
где - волновая функция системы в момент времени
- оператор эволюции (пропагатор).
Особенностью выражения (3.2) является то, что в показателе экспоненты стоит оператор. Определить действие оператора эволюции на волновую функцию можно, например, разложив ее по собственным функциям оператора . Так, в случае дискретного спектра
выражение для волновой функции в произвольный момент времени имеет вид
(3.3)
Аналогичное выражение может быть получено и для непрерывного спектра.
Разложение (3.3) удобно использовать в тех случаях, когда решения стационарного уравнения Шредингера для конкретной задачи являются известными. Но к сожалению круг таких задач очень ограничен. Большинство современных численных методов решения уравнения (3.1) основаны на использовании различных аппроксимаций оператора эволюции . Так, например, разложение оператора эволюции в ряд Тейлора с сохранением первых двух членов дает следующую схему
,(3.4)
здесь номер шага по времени. Существенным недостатком этого алгоритма является необходимость знать волновую функцию в моменты
и
. Кроме того, для оценки действия оператора
на функцию
нужно вычислять вторую производную по координате. Простейшая конечно-разностная аппроксимация второй производной
(3.5)
дает неудовлетворительный результат. (См. программный блок 1)[3]
2.2 Преобразование Фурье
Начнем с комплексного ряда Фурье
Рассмотрим случай L .Тогда сумму можно преобразовать в интеграл следующим образом: определим
и
=g(y).Так как
возрастает каждый раз на единицу ,то
где
.
Таким образом, полученные выше формулы приобретают вид
(4.1)
Величина называется преобразованием Фурье от
и наоборот. Положение множителя
довольно произвольно; часто величины
и
определяют более симметрично:
(4.2)
Выражения (4.1) или (4.2) можно скомбинировать следующим образом:
(4.3)
Равенство (4.3) удовлетворяется для любой функции это позволяет сделать интересный вывод об интеграле
как функции
. Он равен нулю всюду, кроме точки
, а интеграл от него по любому промежутку ,включающему
, равен единице, т.е. эта функция имеет бесконечно высокий и бесконечно узкий пик в точке
.
Обычно определяют
(Дирака)
следующим образом:
(4.4)
Из этих уравнений следует, что
(4.5)
для любой функции , в случае если интервал интегрирования включает точку
.
Проделанные выше операции над интегралами Фурье показали, что
(4.6)
Это интегральное представление функции.
Дельта – функцию можно использовать, чтобы выразить важный интеграл через преобразование Фурье (4.1) от
:
(4.7)
Это равенство называется теоремой Парсеваля. Она полезна для понимания физической интерпретации преобразования Фурье для , если известен физический смысл
.
Предположим, что четная функция. Тогда
Заметим теперь, что -- также четная функция. Поэтому
(4.9)
Функция и
,определенные теперь только для положительных
и
, называются косинус - преобразованиями Фурье по отношению друг к другу.
Рассматривая преобразования Фурье нечетной функции, получаем аналогичные соотношения Фурье между синус - преобразованиями Фурье:
(4.10)
Если нужно, можно симметризовать выражения, поставив множитель перед каждым интегралом (4.7)-(4.10). [4]
2.3 Метод аппроксимации оператора эволюции (split-operator method)
Рассмотрим более подробно другой метод аппроксимации оператора эволюции, в котором отсутствуют недостатки, свойственные рассмотренной выше схеме. Здесь оператор эволюции аппроксимируется симметричным расщеплением оператора кинетической энергии (split-operator method)
(5.1)
Основная погрешность данной аппроксимации связана с некоммутативностью операторов кинетической и потенциальной энергии. Вычисление действия такого оператора на волновую функцию включает следующие шаги. Преобразованная в импульсное представление волновая функция умножается на и преобразуется обратно в координатное представление, где умножается на
. Полученный результат снова преобразуется в импульсное представление, умножается на
преобразуется обратно в координатное представление. На этом один шаг по времени завершается. Переход от одного представления к
другому осуществляется посредством преобразования Фурье.
В данной курсовой работе используется Гауссов волновой пакет вида , а также ступенчатый потенциал. Сначала преобразуем нашу волновую функцию из координатного представления в импульсное
,(5.2)
затем умножим полученный результат на . На этом завершается половина временного шага. Полученный результат снова преобразуется в координатное представление
(5.3)
и умножается на . После чего вновь преобразуется в импульсное представление
(5.4)
и умножается на . Завершается шаг по времени еще одним преобразованием полученной волновой функции в координатное представление
.(5.5)
Один шаг по времени завершен.
В данной работе этот метод реализован в среде Java, ниже приведены программный блок и полученные графики поведения волновой функции в различные моменты времени.
Важная особенность этого метода заключается в том, что действие каждого из операторов оценивается в их соответствующем локальном представлении.
С методической точки зрения ценность нестационарного подхода состоит в существенно большей наглядности и информативности результатов, по сравнению с результатами решения стационарного уравнения Шредингера. Круг задач, которые могут быть рассмотрены на основе решения нестационарного уравнения Шредингера очень разнообразен.
Для иллюстрации вышесказанного рассмотрим задачу о движении частицы в поле потенциального барьера. Хотя стационарный подход позволяет определить коэффициенты прохождения и отражения частицы он, однако, не позволяет рассмотреть реальную пространственно-временную картину движения частицы через потенциальный барьер, которая является существенно нестационарной. Рассмотрение задачи на основе решения нестационарного уравнения Шредингера позволяет не только сопоставить классический и квантовый подход к проблеме, но и получить ответы на ряд вопросов, представляющих значительный практический интерес (например, длительность процесса туннелирования, скорости прошедших и отраженных частиц и т.д.). Ниже мы приводим результаты решения нестационарного уравнения Шредингера для данной задачи. Начальное состояние частицы задано в виде пакета гауссовой формы, движущегося в направлении области действия потенциала. На графиках представлена временная картина туннелирования такого пакета через потенциальный барьер прямоугольной формы в виде "мгновенных снимков" волнового пакета в разные моменты времени. Как видно, при попадании пакета в область действия потенциала его форма нарушается в результате формирования отраженного волнового пакета и его интерференции с падающим на препятствие пакетом. Через некоторое время формируются два пакета: отраженный и прошедший через препятствие. Движение падающего и отраженного пакета можно сопоставить с движение классической частицы, положение которой совпадает с максимумом в распределении вероятности. В случае протяженного потенциала отраженный пакет "отстает" от отраженной от барьера классической частицы. Физически это связано с тем, что пакет частично проникает в классически запрещенную область, в то время как в классике отражение происходит строго в точке скачка потенциала. Образование же прошедшего пакета представляет собой сугубо квантовый эффект не имеющий классических аналогий.[3]
3. Методы численного решения стационарного уравнения Шредингера
3.1 Метод Нумерова
Рассмотрим решения одномерного стационарного уравнения Шредингера (3.1) частицы, движущейся в одномерном потенциале U(x).
(3.1)
Будем при этом полагать, что его форма имеет потенциала, представленного на рис.1: в точках xmin, xmax потенциал становится бесконечно большим. Это означает, что в точках xmin, xmax расположены вертикальные стенки, а между ними находится яма конечной глубины.
Рисунок 1.
Для удобства дальнейшего решения запишем уравнение Шредингера (3.1) в виде:
(3.2)
Где
(3.3)
С математической точки зрения задача состоит в отыскании собственных функций оператора , отвечающим граничным условиям
(3.4)
и соответствующих собственных значений энергии E.
Так как при
и
при
,
, то можно ожидать, что собственному решению данной задачи соответствует собственная функция, осциллирующая в классически разрешенной области движения
и экспоненциально затухающим в запрещенных областях, где
,
, при
,
. Так как все состояния частицы в потенциальной яме оказываются связанными (т.е. локализованными в конечной области пространства), спектр энергий является дискретным. Частица, находящаяся в потенциальной яме конечных размеров
при
,
при
, имеет дискретный спектр при
и непрерывный спектр при
.
Традиционно для решении задачи о нахождении собственных значений уравнения Шредингера используется метод пристрелки. Идея метода пристрелки состоит в следующем. Допустим, в качестве искомого значения ищется одно из связанных состояний, поэтому в качестве пробного начального значения энергии выбираем отрицательное собственное значение. Проинтегрируем уравнение Шредингера каким-либо известным численным методом на интервале . По ходу интегрирования от
в сторону больших значений
сначала вычисляется решение
, экспоненциально нарастающее в пределах классически запрещенной области. После перехода через точку поворота
, ограничивающую слева область движения разрешенную классической механикой, решение уравнения становится осциллирующим. Если продолжить интегрирование далее за правую точку поворота
, то решение становится численно неустойчивым. Это обусловлено тем, что даже при точном выборе собственного значения, для которого выполняется условие
, решение в области
всегда может содержать некоторую примесь экспоненциально растущего решения, не имеющего физического содержания. Отмеченное обстоятельство является общим правилом: интегрирование по направлению вовнутрь области, запрещенной классической механикой, будет неточным. Следовательно, для каждого значения энергии более разумно вычислить еще одно решение
, интегрируя уравнение (3.1) от
в сторону уменьшения
. Критерием совпадения данного значения энергии является совпадение значений функций
и
в некоторой промежуточной точке
. Обычно в качестве данной точки выбирают левую точку поворота
. Так как функции
,
являются решениями однородного уравнения (3.1), их всегда можно нормировать так, чтобы в точке
выполнялось условие
. Помимо совпадения значений функций в точке
для обеспечения гладкости сшивки решений потребуем совпадения значений их производных