150789 (594592), страница 2

Файл №594592 150789 (Расчет электрического поля, создаваемого высоковольтными линиями электропередачи ОАО "Костромаэнерго") 2 страница150789 (594592) страница 22016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Таблица 1.3 - Допустимые расстояния от механизмов до ЛЭП

Напряжение воздушной

линии, кВ

Расстояние, м

Минимальное

минимальное, измеряемое техническими средствами

до 20

2.0

2.0

20-35

2.0

2.0

35-110

3.0

4.0

110-220

4.0

5.0

220-400

5.0

7.0

400-750

9.0

10.0

750-1150

10.0

11.0

Выполнение поливных работ вблизи воздушных линий электропередачи, находящихся под напряжением, допускается в случаях, когда:

  • при любых погодных условиях водная струя не входит в охранную зону;

  • водная струя входит в охранную зону и поднимается на высоту не более 3 м от земли.

Министерством здравоохранения СССР в 1991 г. были выпущены “Санитарные нормы и правила выполнения работ в условиях воздействия электрических полей промышленной частоты” [8], в которых определены предельно допустимые уровни напряженности электрических полей частотой 50 Гц в зависимости от времени пребывания в условиях их воздействия и даны формулы для расчета времени пребывания.

Документ говорит:

  1. пребывание в электрическом поле с уровнем напряженности, превышающим 25 кВ/м, без применения индивидуальных средств защиты не допускается.

  2. при уровнях напряженности электрического поля 20 - 25 кВ/м время пребывания персонала в электрическом поле не должно превышать 10 мин.

  3. пребывание персонала в электрическом поле с уровнем напряженности, не превышающем 5 кВ/м допускается в течение всего рабочего дня (8 ч).

  4. при уровне напряженности электрического поля 5 - 20 кВ/м включительно допустимое время пребывания персонала рассчитывается по формуле:

где Е – уровень напряженности воздействующего электрического поля в контролируемой зоне (кВ/м);

Т – допустимое время пребывания персонала в электрическом поле с соответствующим уровнем напряженности, ч.

Расчет допустимой напряженности в зависимости от времени пребывания в электрическом поле при 0.5 ч<Т<8 ч производится по формуле:

Допустимое время может быть реализовано одноразово или дробно в течение рабочего дня. В остальное рабочее время необходимо либо использовать средства защиты, либо находиться в электрическом поле с напряженностью до 5 кВ/м.

  1. при нахождении персонала в течение рабочего дня в зонах с различной напряженностью электрического поля допустимое время пребывания вычисляется по формуле:

где - приведенное время, эквивалентное по биологическому действию пребывания в электрическом поле нижней границы нормируемой напряженности,

- время пребывания в контролируемых зонах с напряженностью

- допустимое время пребывания в электрическом поле для соответствующих контролируемых зон по пп. b) и e).

Приведенное время не должно превышать 8 ч.

Количество контролируемых зон определяется перепадом уровней напряженности электрического поля на рабочем месте. Различие в уровнях напряженности электрического поля контролируемых зон устанавливается 1 кВ/м.

При подъеме на оборудование и конструкции с напряженностью электрического поля выше 5 кВ/м средства защиты должны применяться независимо от продолжительности работ. Использование ограничения продолжительности таких работ недопустимо.

В настоящее время в мире ведется работа по унификации подходов к нормированию электрического поля, в том числе промышленной частоты. Однако отсутствуют единые принципы обеспечения безопасности работающих и населения при воздействии электрического поля. В ряде западных стран и в международных рекомендациях нормативные величины электрического поля промышленной частоты значительно выше, чем в РФ. Следует отметить, что за исключением Болгарии и Чехословакии, нормативные значения носят лишь рекомендательный характер или устанавливаются в качестве контролируемых уровней, т. е. не служат стандартами, обязательными для соблюдения в законодательном порядке.

Таблица 1.4 - Зарубежные и международные нормативы электрических полей промышленной частоты (кВ/м) [10]

Страна, организация

Для населения

Производственное воздействие

Характер документа

Основание

Австралия

Как IRPA

Как IRPA

Руководство или рекомендации

Ограничение наведенной плотности тока

Австрия

5;10 - до нескольких. ч/дн и может быть превышено на несколько минут (до 20 кВ/м на 5 мин)

10; до 30 (в зависимости от продолжительности (t. за рабочий день) t<80/E для Е между 10 – 30 кВ./м, хотя точная интерпретация этой формулы представлена в 3 стандартах, ее использующих)

Престандарт

Ограничение наведенной плотности тока

Болгария

5; до 25 (при кратковременном воздействии)

Стандарт

Восприятие разрядов и эффекты на здоровье

Чехословакия

15

Стандарт

Восприятие разрядов и эффекты на здоровье

Швейцария

5

12.3

Руководство или рекомендации, Контроль и исследование уровней; могут иногда превышаться

Ограничение наведенной плотности тока

Продолжение таблицы 1.4

Страна, организация

Для населения

Производственное воздействие

Характер документа

Основание

Италия

5 (для зон, где население может проводить значительную часть дня) 10 (для случаев ограничения воздействия несколькими часами в день и для установления минимального расстояния от ВЛ)

Порядок, правила, нормы чаще утвержденные

Возможное влияние на здоровье

Польша

1 (в домах, больницах, школах и т. п.), 10

15.20 (до 2 ч)

Порядок, правила, нормы, чаще утвержденные

Восприятие разрядов и эффекты на здоровье

Германия ВРЕ Зона воздействия 1 (контролируемые зоны кратковременного воздействия)

Зона воздействия 2 (более длительные воздействия или зоны, где поля не контролируются)

21,32,30 (8.2 и 1 ч/дн, соответственно)

6.67

Порядок, правила, нормы, чаще утвержденные Контроль и исследование уровней; могут иногда превышаться

Ограничение наведенной плотности тока

США - ACGIH (общество врачей - гигиенистов США) (60 Гц)

25

Руководство или рекомендации; Контроль и исследование уровней,

Ограничение наведенной плотности тока

Продолжение таблицы 1.4

Страна, организация

Для населения

Производственное воздействие

Характер документа

Основание

Великобритания - NRPB

12

12

Руководство или рекомендации, Контроль и исследование уровней; могут иногда превышаться

Ограничение наведенной плотности тока

CENELEC (Европейский комитет по электротехнической совместимости)

10

10; до 30 (в зависимости от продолжительности (t, за рабочий день) t< 80/Е для Е между 10-30 кВ./м, хотя точная интерпретация этой формулы представлена в 3 стандартах, ее использующих)

Престандарт; контроль и исследование уровней; могут иногда превышаться

Ограничение наведенной плотности тока; Восприятие разрядов

CEU (Совет Европы)

6.1; 12.3; 19.6 (во избежание превышения каждого из этих уровней должны проводиться различные мероприятия)

Директивные указания по воздействию на работающих

Ограничение наведенной плотности тока

IRPA (Международная ассоциация по защите от излучений) (50/60 Гц)

5 (до 24 ч/дн - ограничение, распространяющиеся на территории, где население может находиться существенную часть дня; 10 - до нескольких. ч/дн. и может быть превышено на несколько минут (до 20 кВ/м на 5 мин.)

10; до 30 (в зависимости от продолжительности (t, за рабочий день) t< 80/Е для Е между 10 – 30 кВ/м, хотя точная интерпретация этой формулы представлена в 3 стандартах ее использующих)

Руководство или рекомендации

Ограничение наведенной плотности тока

2. ТЕОРИЯ РАСЧЕТА ЭЛЕКТРИЧЕСКИХ ПОЛЕЙ

Алгоритм расчета разработан с учетом [11, 12, 13, 14, 15].

Напряженность в точке М пространства , кВ/м от заряда i - го проводника , Кл равна:

где – расстояние, м от точки М в пространстве до i - ого заряда ;

–диэлектрическая проницаемость вакуума, Ф/м.

Чтобы получить формулы для расчета мгновенных, максимальных и действующих значений напряженности электрического поля в пространстве, окружающем линию электропередачи, сначала совмещаем комплексную плоскость с плоскостью поперечного сечения линии.

Рисунок 2.1 - Расположение проводников линии электропередачи в комплексной плоскости

Затем для данной точки М плоскости записываем уравнения для горизонтальной и вертикальной составляющих, создаваемых линейными зарядами ( k ) проводников линии

; (2.1)

,

где – единичный вектор в направлении оси х;

– единичный вектор в направлении оси y;

– координата точки М, в которой вычисляется напряженность;

– координаты i - ого проводника линии электропередачи;

– координаты зеркально отраженного заряда i - ого проводника линии;

- комплексные заряды на i - ых проводниках ЛЭП, которые вычисляется по уравнениям Максвелла в матричной форме:

, откуда

где – столбцовая матрица комплексных напряжений, В;

– столбцовая матрица потенциальных коэффициентов;

– столбцовая матрица комплексных зарядов, проводников, Кл.

переходя к мгновенным значениям

, (2.2)

;

где – потенциальные коэффициенты;

– радиус i - го проводника, м;

и – соответственно амплитудное значение и фаза заряда на i - ом проводнике;

и – соответственно амплитуда и фаза напряжения на i - ом проводнике.

Амплитудное значение фазного напряжения на проводниках линии определяется через действующее значение номинального линейного напряжения как

На основании (2.1) и (2.2) можно заключить, что мгновенные значения вертикальной и горизонтальной составляющих напряженности в данной точке пространства изменяются во времени по закону синуса:

; (2.3)

;

Мгновенное значение результирующей напряженности согласно рисунку 2.1:

(2.4)

где и – соответственно амплитуды и мгновенные значения горизонтальной и вертикальной составляющих напряженности поля;

и – фазы горизонтальной и вертикальной составляющих напряженности поля, которые, как следует из (2.1) равны;

(2.5)

Записывая результирующую напряженность как вектор, изменяющийся во времени и на комплексной плоскости (пространстве), получим

(2.6)

где с учетом (2.3)

(2.7)

(2.8)

где – направление результирующего вектора в данный момент времени;

– мгновенное значение этого вектора.

Анализ выражений (2.7) и (2.8) показывает, что в каждой точке пространства, окружающего проводники линии электропередачи, конец результирующего вектора напряженности электрического поля , описывает эллипс (рисок 2.2 б) за период времени, равный периоду изменения напряжения на фазах линии электропередачи.


а

б

Рисунок 2.2 - Изменение электрического поля в точке М плоскости поперечного сечения линии: а - во времени горизонтальной Ex и вертикальной Ey составляющих; б - в пространстве направления и во времени Т результирующей напряженности Е

1) = 0, T=0; 2) = 54,7, T = 45; 3) Emax, = 68,34, T=82,98; 4) = 70,5, T=90; 5) = 90, T=135; 6) = 180, T=180; 7) = 234, T=225;

8) = 250,5, T=270; 9) = 270, T=315; 10) Emin, = - 21,66, T= -7,02;

Таким образом, в какие - то моменты времени величина результирующего вектора принимает максимальное и минимальное значения. Чтобы найти эти экстремальные значения, нужно взять производную по времени от выражения и приравнять ее к нулю:

(2.9)

Решая уравнение (2.9), с учетом (2.8) получаем значения времени, при которых принимает экстремальные значения:

(2.10)

где

;

Подставляя (2.10) в (2.7) и (2.8), находим экстремальные значения результирующей напряженности поля:

(2.11)

а так же их направления:

(2.12)

Действующее значение напряженности в точке М пространства найдем по формуле изменения периодической величины:

(2.13)

Таким образом, горизонтальная и вертикальная составляющие внешнего поля, создаваемого проводниками линии, синусоидальны, тогда как закон изменения во времени результирующего поля не синусоидален.

На рисунке 2.2 в качестве примера, представлены графики, показывающие изменение величин во времени и пространстве, для случая

3. ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ, СОЗДАВАЕМОГО КОРИДОРАМИ ПАРАЛЛЕЛЬНЫХ ЛИНИЙ

Исследование электрического поля линий электропередачи были проведены для всех 16-ти коридоров. Эти коридоры состоят из следующих сочетаний линий: 10/110/110/110; 10/110/110/500; 10/35; 10/35/110; 10/500; 110/110; 110/110/110; 110/110/110/500; 110/110/35/35/220; 110/500; 110/500/110; 220/220; 220/220/220/220/500; 220/35; 220/500; 220/500/220/35.

Электрическое поле обычных (традиционных) ЛЭП исследовано на кафедре ИТВЭ как в нормальных, так и в аварийных режимах работы.

Однако, в каждой энергосистеме существуют коридоры из параллельных линий, присущие только этой энергосистеме. В основном это линии, отходящие от электростанций или от мощных подстанций.

Представляет интерес исследование электрических полей таких коридоров, проходящих по Костромской области. Эти коридоры не заходят в города, а проходят вблизи с/х объектов: птичников, садов и полей, т.е. воздействию от таких коридоров подвергаются в первую очередь жители и работники сел, а так же животные.

Для проведения исследований были получены данные (от ОАО «Костромаэнерго») обо всех коридорах ЛЭП, проходящих по Костромской области, которые представлены в таблице 3.1.

Таблица 3.1 – Данные о коридорах ЛЭП в ОАО «Костромаэнерго».

Номер п/п

Наименование ВЛ (название, класс напряжения (кВ), место измерения)

Влияющие ВЛ (название, класс напряжения,кВ)

Расстояние между ВЛ, м

1

ВЛ-110 Галич-Антропово(р)

Оп.№154

ВЛ-110 Нея-Антропово(т)

40

2

ВЛ-220 Борок-Галич

Оп.№10,88,166

ВЛ-500 КАЭС-Вятка

55

3

ВЛ-220 Борок-Галич

Оп.№166,183,188

ВЛ-220 Кострома-Галич

50

4

ВЛ-220 Борок-Галич

Оп.№166,173

ВЛ-35 Галич-ПТФ

40

5

ВЛ-220 Борок-Галич

Оп.№166

ВЛ-500 КАЭС-Вятка

ВЛ-220 Кострома-Галич

ВЛ-35 Галич-ПТФ

55

55

40

6

ВЛ-110 Галич-Антропово(р)

Оп.№152

ВЛ-500 КАЭС-Вятка

50

7

ВЛ-110 Борок-Галич (т)

Оп.№1

ВЛ-110 Борок-Новая

ВЛ-110 Борок-Буй

40

40

8

ВЛ-110 Галич-Антропово(т)

Оп.№152

ВЛ-500 КАЭС-Вятка

ВЛ-110 Галич-Антропово(р)

50

50

9

ПС Лопарево ф10-03

Оп.№49,56

ВЛ-500 КАЭС-Вятка

40

10

ПС Галич ф10-03 Отпайка на Шокшу

Оп.№1,2,3

ВЛ-110 Галич-Антропово(2 цепн.)

Пересеч.ВЛ-110 Галич-Чухлома

30

40

11

ВЛ-110 Шарья(р)-Поназырево(т)

Оп.№33

ВЛ-110 Шарья(т)-Поназырево(т)

ВЛ-110 Шарья(р)-Рождественское

ЛЭП-500 КАЭС-Вятка

40

40

50

Продолжение таблицы 3.1

12

ВЛ 10КВ Ф 10-04 от РУ Поназырево10кВ.до ф 10-09 ПС Якшанга 110/10 кВ

Опора №100

ВЛ 110 Шарья(р)-Поназырево(т)

ВЛ 110 Шарья(т)- Поназырево(т)

ЛЭП-500 КАЭС-Вятка.

30

40

50

13

ВЛ ф 10-03 ПС Ильинское35/10кВ.

Опора №11

ВЛ-35 Боговарово -Ильинское

25

14

ВЛ ф 10-05 ПС Пыщуг 110/35/10 кВ.

Опора №112

ВЛ-35 Пыщуг-Кривячка

Вл-110 Пыщуг-Новинское

25

35

15

ВЛ 110 КВ от ПС Кострома-2 до ТЭЦ-2.

ВЛ 110 КВ от ПС Кострома-2 до ТЭЦ-2.

ВЛ 35 КВ от ПС Кострома-2 на Никольское.

ВЛ 35 КВ от ПС Кострома-2 на Караваево.

ВЛ 220 КВ от ПС Кострома-2 на Галич.

40

35

30

40

16

ВЛ 220 КВ от ПС Костромской ГРЭС (двухцепная).

ВЛ 220 КВ от ПС Костромской ГРЭС (двухцепная).

ВЛ 500 КВ от ПС Костромской ГРЭС.

50

55

Допустимые охранные зоны ЛЭП согласно ПУЭ представлены в таблице 3.2.

Таблица 3.2 – Допустимые охранные зоны воздушных линий электропередач (согласно ПУЭ/Минэнерго РФ. - 7-е изд., перераб. и доп. - М.: Энергоатомиздат, 2000. - 648с.)

Класс напряжения ВЛ, кВ

Охранная зона ВЛ, м

До 1

2

1-20

10

35

15

110

20

150,220

25

330,400,500

30

750

40

1150

55

Зона вдоль переходов через водоемы: 100 м для несудоходных водоемов (для судоходных водоемов охранные зоны как на суше).

На основе данных таблиц 3.1 и 3.2, а так же справочной литературы были составлены исходные данные по всем коридорам, которые необходимы для задания в компьютерную программу, разработанную на кафедре ИТВЭ.

Всего были рассчитаны электрические поля 16 коридоров. Расчеты велись как в нормальном, так и в аварийных режимах работы:

1) Режим с отключенной фазой А одной линии.

2) Режим с отключенной фазой В одной линии.

3) Режим перенапряжения одной линии.

4) Режим перенапряжения с отключенной фазой А одной линии.

5) Режим перенапряжения с отключенной фазой B одной линии.

3.1 Исследование электрического поля, создаваемого коридором ВЛ 110/110

Для коридора из двух параллельных линий (110/110), исходные данные которого указаны в таблице 3.1 было рассчитано электрическое поле для всех режимов работы линий, построены изолинии электрического поля и графики зависимости напряженности от координаты X. Результаты расчетов сведены в таблицы 3.3-3.8.

На рисунках 3.1, 3.3, 3.5, 3.7, 3.9, 3.11 представлены изолинии (линии равной напряженности) E=10 кВ/м электрического поля в нормальном и аварийных режимах.

На рисунках 3.2, 3.4, 3.6, 3.8, 3.10, 3.12 построены графики изменения напряженности на высоте двух метров от земли под линиями.

Таблица 3.3. - Мгновенные и действующие значения напряженности электрического поля (кВ/м) в центре пролета линии на высоте Н=2 метра над землей при нормальном режиме работы коридора.

Координата
по оси
X, м

Максимальное деленное на
корень из двух кВ/м

Действую
щее Eд, кВ/м

Максимальное Emax, кВ/м

Минимальное Emin, кВ/м

Элипсность
Emin/Emax

Горизонтальная составляющая Ex, кВ/м

Вертикальная составляющая Eу, кВ/м

-10.00

.512

.521

.724

.137

.18851

.195

.483

-8.00

.740

.751

1.046

.182

.17363

.282

.696

-6.00

1.057

1.071

1.495

.243

.16231

.340

1.015

-4.00

1.361

1.386

1.925

.371

.19283

.293

1.355

-2.00

1.372

1.460

1.940

.708

.36484

.575

1.342

.00

1.044

1.361

1.477

1.235

.83597

.873

1.044

2.00

1.357

1.448

1.920

.713

.37115

.574

1.329

4.00

1.342

1.368

1.897

.375

.19782

.299

1.334

6.00

1.032

1.047

1.460

.251

.17184

.349

.988

8.00

.710

.724

1.005

.197

.19636

.292

.663

10.00

.480

.493

.678

.161

.23759

.206

.448

12.00

.335

.348

.474

.132

.27877

.140

.319

14.00

.251

.263

.355

.109

.30817

.098

.244

16.00

.205

.215

.290

.093

.32146

.073

.202

18.00

.182

.191

.257

.083

.32383

.060

.181

20.00

.175

.184

.247

.080

.32344

.057

.175

22.00

.182

.191

.257

.083

.32383

.060

.181

24.00

.205

.215

.290

.093

.32146

.073

.202

26.00

.251

.263

.355

.109

.30817

.098

.244

28.00

.335

.348

.474

.132

.27877

.140

.319

30.00

.480

.493

.678

.161

.23759

.206

.448

32.00

.710

.724

1.005

.197

.19636

.292

.663

34.00

1.032

1.047

1.460

.251

.17184

.349

.988

36.00

1.342

1.368

1.897

.375

.19782

.299

1.334

38.00

1.357

1.448

1.920

.713

.37115

.574

1.329

Продолжение таблицы 3.3

40.00

1.044

1.361

1.477

1.235

.83597

.873

1.044

42.00

1.372

1.460

1.940

.708

.36484

.575

1.342

44.00

1.361

1.386

1.925

.371

.19283

.293

1.355

46.00

1.057

1.071

1.495

.243

.16231

.340

1.015

48.00

.740

.751

1.046

.182

.17363

.282

.696

50.00

.512

.521

.724

.137

.18851

.195

.483

Рисунок 3.1. – Электрическое поле коридора 110,110 в поперечной плоскости (нормальный режим, изолинии 10 A/м).

Рисунок 3.2.- Зависимость Emax/1.41 от координаты X на уровне двух метров от земли. Нормальный режим.

Таблица 3.4. - Мгновенные и действующие значения напряженности электрического поля (кВ/м) в центре пролета линии на высоте Н=2 метра над землей при отключенной фазе А 2-й линии.

Координата
по оси
X, м

Максимальное
деленное на
корень из двух

кВ/м

Действую
щее Eд, кВ/м

Максимальное
Emax,
кВ/м

Минимальное
Emin,
кВ/м

Элипсность
Emin/Emax

Горизонтальная
составляющая
Ex, кВ/м

Вертикальная
составляющая
Eу, кВ/м

-10.00

.496

.506

.701

.141

.20156

.196

.466

-8.00

.723

.735

1.022

.185

.18064

.283

.678

-6.00

1.041

1.055

1.472

.244

.16555

.341

.998

-4.00

1.346

1.371

1.904

.371

.19494

.293

1.340

-2.00

1.358

1.448

1.920

.709

.36917

.576

1.328

.00

1.035

1.357

1.464

1.241

.84758

.878

1.035

2.00

1.366

1.458

1.932

.718

.37169

.584

1.336

4.00

1.359

1.388

1.922

.397

.20668

.307

1.354

6.00

1.061

1.080

1.501

.285

.18994

.347

1.023

8.00

.756

.774

1.069

.235

.21983

.286

.719

10.00

.548

.565

.776

.192

.24709

.198

.529

12.00

.433

.445

.612

.147

.23986

.129

.426

14.00

.376

.384

.532

.106

.19900

.083

.375

16.00

.354

.357

.500

.074

.14797

.053

.353

18.00

.350

.352

.495

.051

.10267

.036

.350

20.00

.360

.361

.509

.034

.06690

.029

.359

22.00

.381

.381

.538

.021

.03908

.030

.380

24.00

.412

.412

.582

.009

.01615

.036

.410

26.00

.454

.454

.641

.004

.00548

.046

.451

28.00

.506

.506

.715

.022

.03048

.057

.503

30.00

.566

.568

.801

.053

.06615

.072

.563

32.00

.633

.638

.895

.112

.12484

.103

.629

34.00

.707

.724

1.000

.220

.22013

.179

.702

36.00

.840

.879

1.188

.366

.30800

.323

.818

38.00

1.182

1.218

1.672

.415

.24814

.498

1.111

40.00

1.706

1.720

2.413

.311

.12906

.505

1.645

42.00

2.050

2.051

2.899

.097

.03359

.139

2.046

44.00

1.911

1.913

2.703

.111

.04122

.298

1.889

46.00

1.492

1.498

2.109

.199

.09435

.420

1.438

48.00

1.094

1.103

1.548

.190

.12280

.348

1.046

50.00

.809

.815

1.144

.147

.12848

.247

.777

Рисунок 3.3. – Электрическое поле коридора 110,110 в поперечной плоскости (режим с отключенной фазой А 2-й линии, изолинии 10 A/м).

Рисунок 3.4.- Зависимость Emax/1.41 от координаты X на уровне двух метров от земли. Отключена фаза А 2-й линии.

Таблица 3.5. - Мгновенные и действующие значения напряженности электрического поля (кВ/м) в центре пролета линии на высоте Н=2 метра над землей при отключенной фазе B 2-й линии.

Координата
по оси
X, м

Максимальное
деленное на
корень из двух

кВ/м

Действую
щее Eд, кВ/м

Максимальное
Emax,
кВ/м

Минимальное
Emin,
кВ/м

Элипсность
Emin/Emax

Горизонтальная
составляющая
Ex, кВ/м

Вертикальная
составляющая
Eу, кВ/м

-10.00

.515

.522

.728

.118

.16264

.195

.484

-8.00

.748

.757

1.058

.163

.15443

.281

.703

-6.00

1.069

1.081

1.512

.228

.15086

.338

1.027

-4.00

1.376

1.400

1.946

.366

.18791

.291

1.370

-2.00

1.389

1.478

1.964

.716

.36426

.575

1.362

.00

1.075

1.385

1.520

1.235

.81219

.873

1.075

2.00

1.386

1.474

1.960

.708

.36123

.570

1.359

4.00

1.371

1.393

1.939

.346

.17855

.280

1.365

6.00

1.061

1.070

1.501

.196

.13065

.333

1.017

8.00

.734

.739

1.038

.121

.11620

.279

.685

10.00

.492

.494

.696

.067

.09699

.195

.454

12.00

.328

.329

.465

.026

.05512

.132

.301

14.00

.217

.217

.307

.009

.02891

.093

.196

16.00

.139

.142

.197

.042

.21268

.073

.122

18.00

.085

.103

.120

.083

.68807

.067

.078

20.00

.103

.115

.146

.070

.48178

.070

.091

22.00

.166

.169

.235

.045

.19077

.081

.148

24.00

.251

.252

.355

.032

.09093

.102

.231

26.00

.366

.366

.517

.027

.05199

.135

.341

28.00

.524

.525

.741

.025

.03341

.185

.491

30.00

.748

.748

1.058

.021

.01961

.258

.703

32.00

1.063

1.063

1.503

.001

.00061

.345

1.005

34.00

1.471

1.472

2.080

.076

.03661

.396

1.417

36.00

1.871

1.884

2.646

.312

.11781

.335

1.854

38.00

1.995

2.077

2.821

.815

.28885

.582

1.993

40.00

1.873

2.066

2.648

1.235

.46622

.873

1.873

42.00

2.006

2.087

2.838

.814

.28674

.582

2.004

44.00

1.890

1.903

2.673

.312

.11692

.329

1.874

46.00

1.497

1.498

2.117

.078

.03678

.386

1.447

48.00

1.097

1.097

1.552

.002

.00102

.335

1.045

50.00

.792

.792

1.120

.017

.01487

.246

.753

Рисунок 3.5. – Электрическое поле коридора 110,110 в поперечной плоскости (режим с отключенной фазой B 2-й линии, изолинии 10 A/м).

Рисунок 3.6.- Зависимость Emax/1.41 от координаты X на уровне двух метров от земли. Отключена фаза B 2-й линии.

Таблица 3.6. - Мгновенные и действующие значения напряженности электрического поля (кВ/м) в центре пролета линии на высоте Н=2 метра над землей при перенапряжении.

Координата
по оси
X, м

Максимальное
деленное на
корень из двух

кВ/м

Действующее Eд, кВ/м

Максимальное
Emax,
кВ/м

Минимальное
Emin,
кВ/м

Элипсность
Emin/Emax

Горизонтальная
составляющая
Ex, кВ/м

Вертикальная
составляющая
Eу, кВ/м

-10.00

.513

.523

.726

.140

.19289

.195

.485

-8.00

.740

.751

1.046

.185

.17726

.282

.696

-6.00

1.056

1.070

1.493

.246

.16457

.340

1.015

-4.00

1.359

1.385

1.922

.372

.19367

.293

1.353

-2.00

1.369

1.457

1.936

.705

.36431

.574

1.339

.00

1.038

1.356

1.468

1.233

.84031

.872

1.038

2.00

1.349

1.440

1.908

.712

.37324

.573

1.321

4.00

1.332

1.359

1.884

.378

.20084

.302

1.325

6.00

1.022

1.038

1.445

.258

.17845

.353

.976

8.00

.699

.715

.989

.208

.21061

.296

.650

10.00

.469

.485

.663

.176

.26526

.210

.437

12.00

.328

.345

.464

.150

.32301

.145

.313

14.00

.251

.267

.355

.128

.35964

.103

.246

16.00

.216

.229

.305

.110

.35912

.080

.215

18.00

.206

.218

.292

.098

.33424

.069

.206

20.00

.215

.225

.304

.093

.30764

.068

.214

22.00

.239

.248

.337

.098

.28963

.076

.236

24.00

.282

.293

.399

.111

.27873

.096

.277

26.00

.355

.368

.502

.134

.26750

.131

.344

28.00

.478

.493

.676

.168

.24816

.191

.454

30.00

.682

.699

.965

.211

.21887

.284

.638

32.00

1.006

1.023

1.423

.265

.18660

.404

.940

34.00

1.456

1.476

2.059

.344

.16725

.484

1.394

36.00

1.888

1.924

2.670

.522

.19570

.416

1.878

38.00

1.909

2.035

2.699

.998

.36968

.804

1.869

40.00

1.469

1.911

2.077

1.730

.83286

1.223

1.468

42.00

1.923

2.047

2.719

.993

.36520

.805

1.882

44.00

1.908

1.942

2.698

.519

.19223

.410

1.899

46.00

1.481

1.500

2.094

.336

.16069

.475

1.422

48.00

1.036

1.051

1.465

.250

.17102

.395

.974

50.00

.716

.728

1.012

.188

.18531

.273

.67

Рисунок 3.7. – Электрическое поле коридора 110,110 в поперечной плоскости (режим перенапряжения, изолинии 10 A/м).

Рисунок 3.8.- Зависимость Emax/1.41 от координаты X на уровне двух метров от земли. Режим перенапряжения.

Таблица 3.7. - Мгновенные и действующие значения напряженности электрического поля (кВ/м) в центре пролета линии на высоте Н=2 метра над землей при перенапряжении с отключенной фазой А 2-й линии.

Координата
по оси
X, м

Максимальное
деленное на
корень из двух

кВ/м

Действую
щее Eд, кВ/м

Максимальное
Emax,
кВ/м

Минимальное
Emin,
кВ/м

ЭлипсностьEmin/Emax

Горизонтальная
составляющая
Ex, кВ/м

Вертикальная
составляющая
Eу, кВ/м

-10.00

.491

.501

.694

.147

.21176

.196

.461

-8.00

.716

.729

1.013

.190

.18742

.284

.671

-6.00

1.034

1.048

1.462

.247

.16925

.342

.991

-4.00

1.338

1.364

1.893

.372

.19667

.294

1.332

-2.00

1.350

1.439

1.909

.707

.37040

.576

1.319

.00

1.025

1.350

1.450

1.243

.85685

.879

1.025

2.00

1.362

1.454

1.926

.720

.37382

.587

1.330

4.00

1.357

1.388

1.919

.409

.21305

.313

1.352

6.00

1.063

1.085

1.503

.305

.20294

.350

1.027

8.00

.765

.786

1.081

.259

.23939

.288

.732

10.00

.569

.589

.805

.213

.26503

.199

.554

12.00

.468

.482

.662

.162

.24426

.130

.464

14.00

.427

.435

.604

.115

.19001

.084

.427

16.00

.418

.422

.591

.079

.13339

.056

.418

18.00

.428

.429

.605

.053

.08801

.041

.427

20.00

.452

.453

.639

.035

.05440

.039

.451

22.00

.489

.489

.691

.020

.02924

.045

.487

24.00

.539

.539

.762

.007

.00875

.056

.536

26.00

.603

.603

.852

.009

.01092

.070

.599

28.00

.680

.680

.962

.033

.03450

.085

.675

30.00

.769

.771

1.088

.075

.06926

.105

.764

32.00

.867

.874

1.226

.156

.12741

.148

.861

34.00

.976

1.000

1.380

.306

.22185

.252

.967

36.00

1.168

1.222

1.652

.507

.30703

.453

1.135

38.00

1.652

1.701

2.336

.574

.24581

.698

1.551

40.00

2.387

2.407

3.376

.432

.12788

.707

2.301

42.00

2.869

2.870

4.057

.135

.03336

.195

2.864

44.00

2.675

2.677

3.783

.154

.04078

.417

2.644

46.00

2.087

2.096

2.952

.276

.09337

.587

2.012

48.00

1.530

1.542

2.164

.263

.12147

.487

1.463

50.00

1.129

1.138

1.597

.203

.12706

.346

1.084

Рисунок 3.9. – Электрическое поле коридора 110,110 в поперечной плоскости (режим перенапряжения с отключенной фазой А 2-й линии, изолинии 10 A/м).

Рисунок 3.10.- Зависимость Emax/1.41 от координаты X на уровне двух метров от земли. Режим перенапряжения с отключенной фазой А 2-й линии.

Таблица 3.8. - Мгновенные и действующие значения напряженности электрического поля (кВ/м) в центре пролета линии на высоте Н=2 метра над землей при перенапряжении с отключенной фазой B 2-й линии.

Координата
по оси
X, м

Максимальное
деленное на
корень из двух

кВ/м

Действую
щее Eд, кВ/м

Максимальное
Emax,
кВ/м

Минимальное
Emin,
кВ/м

Элипсность
Emin/Emax

Горизонтальная
составляющая
Ex, кВ/м

Вертикальная
составляющая
Eу, кВ/м

-10.00

.518

.524

.732

.115

.15695

.195

.486

-8.00

.751

.760

1.062

.160

.15051

.281

.706

-6.00

1.073

1.084

1.517

.225

.14859

.337

1.031

-4.00

1.380

1.404

1.952

.365

.18680

.291

1.374

-2.00

1.393

1.483

1.970

.716

.36352

.575

1.367

.00

1.081

1.389

1.528

1.234

.80712

.872

1.081

2.00

1.389

1.476

1.965

.706

.35928

.568

1.363

4.00

1.374

1.394

1.943

.338

.17375

.276

1.367

6.00

1.062

1.070

1.502

.181

.12035

.330

1.018

8.00

.733

.737

1.037

.100

.09647

.278

.682

10.00

.488

.489

.690

.042

.06137

.196

.448

12.00

.321

.321

.454

.005

.01002

.134

.292

14.00

.207

.210

.293

.047

.15922

.098

.186

16.00

.132

.147

.187

.092

.49051

.082

.122

18.00

.121

.141

.172

.102

.59489

.080

.117

20.00

.183

.189

.259

.067

.25909

.088

.167

22.00

.270

.272

.381

.047

.12338

.106

.250

24.00

.385

.386

.545

.038

.06911

.136

.361

26.00

.541

.542

.766

.034

.04505

.183

.510

28.00

.759

.759

1.073

.034

.03178

.254

.716

30.00

1.069

1.069

1.511

.030

.01987

.356

1.008

32.00

1.505

1.505

2.128

.003

.00141

.479

1.427

34.00

2.073

2.074

2.931

.105

.03581

.550

2.000

36.00

2.630

2.648

3.720

.436

.11711

.467

2.607

38.00

2.802

2.916

3.962

1.141

.28804

.815

2.799

40.00

2.628

2.899

3.717

1.730

.46537

1.223

2.628

42.00

2.813

2.927

3.979

1.140

.28651

.816

2.811

44.00

2.650

2.668

3.747

.436

.11646

.460

2.628

46.00

2.099

2.101

2.969

.107

.03592

.541

2.030

48.00

1.540

1.540

2.178

.001

.00025

.468

1.467

50.00

1.113

1.113

1.574

.026

.01649

.345

1.059

Рисунок 3.11. – Электрическое поле коридора 110,110 в поперечной плоскости (режим перенапряжения с отключенной фазой B 2-й линии, изолинии 10 A/м).

Рисунок 3.12.- Зависимость Emax/1.41 от координаты X на уровне двух метров от земли. Режим перенапряжения с отключенной фазой B 2-й линии.

Из представленных таблиц и графиков видно, что в нормальном режиме наибольшая напряженность поля наблюдается в точках Х=-2 м и Х=42 м составляет 1,372 кВ/м. Расстояние, охватываемое изолиниями 10 кВ/м по оси Х, составляет 47 м (от Х=-5 м до Х=42 м).

При отключении фазы А 2-й линии 110 кВ максимальная напряженность возрастает до 2,050 кВ/м, в точке Х=42 м. Напряженность возросла в основном в районе 2-й линии (в 1,5 раза). В районе 1-й линии напряженность осталась прежней. Расстояние, охватываемое изолиниями 10 кВ/м по оси Х, составляет 47 м (от Х=-5 м до Х=42 м).

При отключении фазы В максимум напряженности наблюдается в точке Х=42 м и составляет 2,006 кВ/м. Напряженность возросла больше в 1,46 раза. Расстояние, охватываемое изолиниями 10 кВ/м по оси Х, составляет 47 м (от Х=-5 м до Х=42м).

В режиме перенапряжения на всех фазах максимум напряженности наблюдается в точке Х=38 м и составляет 1,923 кВ/м. Наблюдается рост напряженности электрического поля: в районе 2-й линии в 1,4 раза. Расстояние, охватываемое изолиниями 10 кВ/м по оси Х, составляет 48 м.

В режиме перенапряжения с отключенной фазой А максимум напряженности наблюдается в точке Х=42 м и составляет 2,869 кВ/м. Напряженность возрастает в 2 раза в районе 2-й линии. Расстояние, охватываемое изолиниями 10 кВ/м по оси Х, осталось таким же 48 м (от Х=-5 м до Х=43 м).

В режиме перенапряжения с отключенной фазой B максимум напряженности наблюдается в точке Х=42 м и составляет 2,813 кВ/м. Напряженность возрастает в 2 раза в районе 2-й линии. Расстояние, охватываемое изолиниями 10 кВ/м по оси Х, осталось таким же 48 м (от Х=-5 м до Х=43м).

Можно сделать вывод, что для данного коридора наиболее опасным являются режим перенапряжения с отключенной фазой А, так как при этом наблюдается наибольший рост напряженности электрического поля и составляет 2,869 кВ/м.

Для всех 16-ти коридоров были проведены аналогичные расчеты и построены аналогичные графики. В связи с тем, что они занимают очень много места, результаты для каждого коридора сведены в общие таблицы 3.9 - 3.23 и построены только графики зависимости напряженности под коридорами от координаты Х.

4. Экранирование электрического поля, создаваемого коридорами параллельных линий, с помощью пассивных тросовых экранов

Расширение городов и поселков часто приводит к необходимости сближения зон жилой застройки с трассами уже существующих высоковольтных воздушных линий электропередачи. Возникает необходимость в одном из следующих мероприятий: перенос линий из зон застройки, увеличение высоты подвеса проводов фаз линий (т. е. увеличение высоты опор), переоборудование нескольких параллельных одно цепных высоковольтных воздушных линий электропередачи в много цепные, перевод воздушных линий на более низкое напряжение или на кабельные линии и т. д., каждое из которых требует больших капитальных затрат и не всегда по ряду причин может быть выполнено. Тогда возникает необходимость в использовании экранов, снижающих уровень напряженности электрического поля, создаваемого ЛЭП.

Как показано в разделе 1, на территории жилой застройки напряжённость электрического поля не должна превышать 0.5 - 1 кВ\м. Для экранирования электрического поля применяют заземленные (пассивные) тросовые экраны [16]. Рассмотрим эффективность применения таких экранов.

Рассмотрим, как будет изменяться напряженность при расположении экранов в разных точках рядом с рассмотренными коридорами ЛЭП. Координаты троса далее указаны относительно крайней фазы коридора.

Таблица 4.1 Исследование электрического поля, создаваемого коридором ВЛ 10/110/110/110 с использованием троса на расстоянии 3,5 метров от последней фазы.

Координата
Хэт, м

Координата Yэт

3,5

4,5

5,5

6,5

3,5

Х, м.

Е кВ/м

Х

Е кВ/м

Х

Е кВ/м

Х

Е кВ/м

Х

Е кВ/м

70

1,764

70

1,042

70

1,04

70

1,042

70

1,047

72

1,433

72

1,237

72

1,211

72

1,205

72

1,22

74

1,179

74

1,115

74

1,088

74

1,103

74

1,138

76

0,982

76

0,565

76

0,673

76

0,735

76

0,791

78

0,826

78

0,492

78

0,46

78

0,463

78

0,49

80

0,702

80

0,371

80

0,338

80

0,318

80

0,314

Для данного коридора выбираем точку с координатами Хэт = 3,5 м и Yэт = 3,5 м, так как в данной точке происходит наибольшее снижение напряженности электрического поля. Напряженность без использования тросового экрана равнялась Е = 0,982 кВ/м, с экраном Е = 0,565 кВ/м. Напряженность электрического поля снизилась на 42,5 %.

Коридор

Координаты троса

E, кВ/м при
нормальном
режиме работы без тросов

E, кВ/м с тросом

% снижения
напряженности

Хт, м

Yт, м

10/110/110/110

3,5

3,5

0,982

0,565

42,5

10/110/110/500

4

4

9,335

4,81

48,5

10/35

3

3

0,235

0,143

39,1

10/35/110

3,5

3,5

1,051

0,577

45,1

10/500

4

4

10,554

5,65

46,5

110/110

3,5

3,5

1,057

0,58

45,1

110/110/110

3,5

3,5

1,048

0,575

45,1

110/110/110/500

4

4

10,55

5,649

46,5

110/110/35/35/220

3,5

3,5

3,247

1,753

46,0

110/500

4

4

10,552

5,649

46,5

110/500/110

3,5

3,5

1,094

0,529

51,6

220/220

3,5

3,5

2,824

1,453

48,5

220/220/220/220/500

4

4

6,69

3,316

50,4

220/35

3,5

3,5

0,309

0,194

37,2

220/500

4

4

9,339

4,808

48,5

220/500/220/35

4

5

0,218

0,132

39,4

а) Коридор 10/110/110/110 б) Коридор 10/110/110/500

в) Коридор 10/35 г) Коридор 10/35/110

д) Коридор 10/500 е) Коридор 110/110

ж) Коридор 110/110/110 з) Коридор 110/110/110/500

и) Коридор 110/110/35/35/220 к) Коридор 110/500

л) Коридор 110/500/110 м) Коридор 220/220

н) Коридор 220/220/220/220/500 о) Коридор 220/35

п) Коридор 220/500 р) Коридор 220/500/220/35

Рис. 4.1 Напряженность электрического поля, создаваемого коридорами при расположении экранирующего троса в оптимальной точке.

Анализ таблицы 4.17 и рисунка 4.1 показывает, что напряженность электрического поля с применением экранов снижается в среднем на 45% при расположении экрана в оптимальной точке.

6. РАСЧЁТ СТОИМОСТИ ЭКРАНОВ ДЛЯ СНИЖЕНИЯ ЭЛЕКТРИЧНСКОГО ПОЛЯ

Критерием оценки необходимости внедрения экранов по снижению напряжённости электрического поля является определение размеров капитальных вложений и эксплуатационных издержек в системе защиты окружающей среды от воздействия электрических полей. В первом варианте используются дополнительные деревянные опоры для крепления экранов, а во - втором варианте используются уже имеющиеся опоры с отпайкой.

Оценим эффективность использования внедрения экранов по снижению электрического поля.

Для того чтобы просчитать капитальные вложения в - первом варианте нужно найти необходимое количество опор. Опоры выбираем деревянные.

nоп.= (6.1)

где S- длина линии, проходящей над огородом, м;

50- расстояние между опорами, м.

nоп.= шт.

1. Капитальные вложения в первом и во - втором вариантах, тыс. руб.:

а) Находим капитальные вложения в - первом варианте:

КВ1=Цоп.+Цпров.+ТР+Нр (6.2)

где Цоп.- стоимость опор с учётом монтажа по [19], тыс. руб.;

Цпров.- стоимость провода марки АС-70/11 с учётом монтажа [19], тыс.руб;

ТР - транспортные расходы;

Нр - накладные расходы.

Цоп=nоп. ·Ц1оп.

где nоп.- количество опор, шт.;

Ц1оп.- стоимость одной деревянной опоры с учётом монтажа по [19], тыс. руб.

Цоп=20·3.3=66 тыс. руб.

КВ1=66+84.7+18.08+13.5=182.28 тыс. руб.

б) Находим капитальные вложения во - втором варианте:

КВ2=Цотп.+Цпров.+ТР+Нр (6.3)

где Цотп.- стоимость отпаек с учётом монтажа по [19], тыс. руб.;

Цпров.- стоимость провода марки АС-70/11 с учётом монтажа по [19], тыс.руб.;

ТР - транспортные расходы;

Нр - накладные расходы.

Цотп.=3.5·1.2·Цмет.·nотп.

где 3.5- длина отпайки, м;

1.2- затраты на монтаж отпаек (20 % от цены) по [19];

Цмет.- стоимость металла под отпайки по [19], руб.;

nотп.- количество отпаек равно количеству опор, шт.

Цотп.=3.5·1.2·0.308·20=25.87 тыс. руб.

КВ2=25.87+84.7+13.27+9.91=133.75 тыс. руб.

2. Эксплуатационные затраты по оборудованию:

ЭЗ= А+Р+Пр (6.4)

где А - амортизационные отчисления, тыс. руб.;

Р - затраты на техническое обслуживание ( ТО ) и технический ремонт ( ТР ), тыс. руб.;

Пр- прочие расходы, тыс. руб.

ЭЗ1= 4.37+6.37+1.07=11.81 тыс. руб.

ЭЗ2=3.21+4.68+0.79=8.68 тыс. руб.

3. Найдём приведенные затраты, подставив в формулу (6.2), (6.3) и (6.4), тыс. руб.:

ПЗ=КВ∙Ен+ЭЗ (6.5)

ПЗ1=182.28∙0.15+11.81 = 39.15 тыс. руб.

ПЗ2=133.75∙0.15+8.68 = 28.74 тыс. руб.

Таблица 6.1 - Экономическая эффективность внедрения различных вариантов экранирования.

Показатели

Вариант 1

Вариант 2

Капитальные вложения, тыс. руб.

182.28

133.75

в том числе: стоимость провода, тыс. руб. за 1 км

84.7

84.7

Транспортные расходы 12% от оптовой цены, тыс. руб.

18.08

13.27

Накладные расходы 8% от оптовой цены и транспортных расходов, тыс. руб.

13.05

9.91

Эксплуатационные издержки, тыс. руб.

11.81

8.68

в том числе: издержки на амортизацию 2.4% от капитальных влоений, тыс. руб.

4.37

3.21

в том числе: издержки на ТО и ТР 3.5% от капитальных вложений, тыс. руб.

6.37

4.68

Прочие расходы - 10 % от амортизации и ремонта, тыс. руб.

1.07

0.79

Приведенные затраты, тыс. руб.

39.15

28.74

Социальный эффект:

Так как реакции организма на воздействие электрического поля имеют отрицательный характер, то есть при длительном систематическом пребывании человека в электрическом поле могут возникать изменения функционального состояния нервной, сердечно - сосудистой, иммунной систем, так же имеется вероятность увеличения риска развития лейкозов и злокачественных новообразований центральной нервной системы, поэтому возникла необходимость снижения данного вредного влияния электрического поля посредством внедрения экранов.

В качестве критерия экономической оценки был использован минимум приведенных затрат. Наиболее эффективным следует признать второй вариант, где наименьшее значение приведенных затрат.

ЗАКЛЮЧЕНИЕ

  1. Представлен обзор материалов по нормированию электрических полей за 1984 – 2003 г., выпущенных в России, а так же за рубежом. Показано, что несмотря на разные показатели нормирования в них можно установить следующие допустимые значения электрического поля:

  • внутри жилых зданий – 0.5 кВ/м;

  • на территории зоны жилой застройки – 1 кВ/м;

  • в населенной местности, вне зоны жилой застройки, а также на территории огородов и садов – 5 кВ/м;

  • на участках пересечения воздушных линий электропередачи с автомобильными дорогами I - IV категории – 10 кВ/м

  • в ненаселенной местности (незастроенные местности, хотя бы и часто посещаемые людьми, доступные для транспорта и сельскохозяйственные угодья) – 15 кВ/м;

  • в труднодоступной местности (не доступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения – 20 кВ/м;

  1. Представлена методика расчета электрического поля, создаваемого линией произвольной конструкции.

  1. Получены аналитические выражения для времени, когда вектор напряженности электрического поля достигает максимальной и минимальной величины.

  2. Рассчитано электрическое поле линий электропередачи для всех 16-ти коридоров. Они состоят из следующих сочетаний линий: 10/110/110/110; 10/110/110/500; 10/35; 10/35/110; 10/500; 110/110; 110/110/110; 110/110/110/500; 110/110/35/35/220; 110/500; 110/500/110; 220/220; 220/220/220/220/500; 220/35; 220/500; 220/500/220/35. Показано, что электрическое поле может достигать больших значений:

  • для коридоров: 10/110/110/500; 10/500; 110/110/110/500; 110/500; 110/500/110; 220/220/220/220/500; 220/500; 220/500/220/35 - E≤ 13 кВ/м;

  • для коридоров: 110/110/35/35/220; 220/220; 220/35 - E≤ 4 кВ/м;

  • для коридоров: 10/110/110/110; 10/35/110; 110/110; 110/110/110 - E≤1,4 кВ/м.

Наиболее опасными режимами работы являются – режим перенапряжения и режим перенапряжения с отключением одной из фаз, так как электрическое поле в первом случае в среднем возрастает в 1,4 раза, а во втором – в 2 раза.

  1. Для всех рассмотренных коридоров выбраны пассивные тросовые экраны, снижающие электрическое поле на 35 – 52%.

  2. Доработана инструкция по технике безопасности при ликвидации аварий и ненормальных режимов работы подстанции 110/35/10 кВ.

  3. Произведены расчёты стоимости экранов для снижения электрического поля при помощи подвески экранов на деревянные опоры и при помощи отпаек от уже имеющихся опор. Расчёты показали, что экономически целесообразнее использовать второй вариант, так как он менее капиталоёмкий, требуется меньше инвестиций на его реализацию.

  4. Разработана программа на языке Turbo Pasсal, которая позволяет рассчитывать напряженность электрического поля под трехфазной линией электропередачи.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Нормы и правила по охране труда при работах на подстанциях и ВЛ электропередачи напряжением 400, 500, 750 кВ переменного тока промышленной частоты. -М.: СЦНТИ ОРГРЭС, 1972. -11с. № 868-80.

2. ГОСТ 12.1.002.-75 - Общественные стандарты Союза СССР. Система стандартов и безопасности труда. Государственный комитет СССР по стандартам. -М.: Изд-во стандартов, 1979. -12 с.

3. Нормы и правила по охране труда при работах на подстанциях и ВЛ электропередачи напряжением 400, 500, 750 кВ переменного тока промышленной частоты. -М.: СЦНТИ ОРГРЭС, 1972. -11с.

4. Правила устройства электроустановок. Минэнерго СССР. - 6-е изд., перераб. и доп. - М.: Энергоатом издат., 1985. - 640 с.

5. CCБТ. Электрические поля промышленной частоты. Допустимые уровни напряженности и требования к проведению контроля на рабочих местах.

6. Санитарные нормы и правила защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты. Министерство здравоохранения СССР. -Москва, 1984 .

7. ГОСТ 12.1.051 – 90 - Электробезопасность. Расстояния безопасности в охранной зоне линий электропередачи напряжением свыше 1000 В. -Москва, 1990.

8. Санитарные нормы и правила выполнения работ в условиях воздействия электрических полей промышленной частоты (50 Гц). Министерство здравоохранения СССР. - Москва, 1991.

9. Санитарные правила и нормы. СанПиН 2.2.4.723-98.

10 . Отчет НИР. Программа рачета, результаты расчетов и измерений электрических и магнитных полей высоковольтных воздушных линий электропередачи. – М.: РАО ЕЭС России “Электросетьсервис”, 1999. -130 с.

11. Справочник по физике. Сост.: Б. М. Яворский, А. А. Детлаф. - М.: Наука, 1977. -942 с.

12. Справочник по сооружению линий электропередачи напряжением 35-750 кВ. Сост.: С. В. Крылов и др.: под ред. М. А. Реута. -М.: энергоатомиздат, 1990. - 496 с.

13. Кац Р. А., Пельман Л. С. Расчет электрического поля трехфазной линии электропередачи. Электричество. 1978. -16 с. №1.

14. Солдатов В.А., Постолатий В.М. Расчет и оптимизация параметров и режимов управляемых многопроводных линий. Кишинев: Изд. “Штиинца”, 1990. -240 с.

15. Солдатов В. А., Постолатий В. М. Расчет напряженности электрического поля в пространстве, окружающем линию электропередач. Изд. АН МССР. Сер. физ.-техн. и мат. наук, 1984. -73 с. №216. Отчет НИР “Пути улучшения электромагнитной обстановки вдоль трасс ВЛ”. Том №3. Часть 1. Экранирование электрических полей ВЛ СВН с помощью пассивных тросовых экранов. - М.: РАО ЕЭС России “Электросетьсервис”, 2000. -26 с.

17. Справочник по электроустановкам высокого напряжения. Энергоатомиздат. Под ред. И. А. Баумштейна и С. А. Бажанова. - Москва, 1989.

18. Фукс Б. А., Шабат В. В. Теория функций комплексного переменного и некоторые их приложения. -М.: Гос. изд. физ.-мат. лит-ры, 1959.- 242 с.

19. Водяников В.Т. Экономическая оценка средств электрификации и автоматизации сельскохозяйственного производства и систем сельской энергетики. Учебное пособие для студентов, аспирантов и специалистов сельской энергетики. – М.: МГАУ, 1997. -180 с.


ПРИЛОЖЕНИЕ

Программа расчета электрического поля трехфазной ЛЭП на языке Turbo Pascal.

program diplom;

uses crt,printer,graph;

const

{Eps0=8.85-12;}

con=1/(2*pi);

e=500;

c1='-------------------------------------------------------------------------------';

label

tabl;

var

st:integer;

g:array[1..2,1..e] of real;

x:array[1..3] of real; {массив координат проводников фаз}

y:array[1..3] of real; {массив координат проводников фаз}

Umod:array[1..3] of real;{массив модулей напряжений фаз}

Uarg:array[1..3] of real; {массив углов напряжений фаз}

Xm,Ym,r0:real; {координаты точки расчета и радиус проводников}

k,i,j:integer; {счетчики циклов}

Ur:array[1..3] of real; {массив действительной части комплексного напряжения}

Ui:array[1..3] of real; { массив мнимой части комплексного напряжения }

delta:array[1..3] of real; {промежуточная переменная}

delta1:array[1..3] of real;{ промежуточная переменная }

Cx:array[1..3] of real; { промежуточная переменная }

Cy:array[1..3] of real; { промежуточная переменная }

Exr,Eyr,Exi,Eyi,Ex,Ey:real;{действительная и мнимая части вертикальной и горизонтальной составляющих напряженности}

LK,LNA,DL:real; {LK-конечная точка расчета, LN- начальная точка расчета, DL-шаг}

Exmod,Eymod,Fix,Fiy:real; {модули вертикальной и горизонтальной составляющих, фазы напряженности}

A,B,Tmax,Tmin,Emax,Emin,Emaxkor2,h:real;

nf,Kei:integer; {nf число проводников в фазе}

DZ,D,rf,rekv:real;

procedure graphika;

var

grDriver: Integer;

grMode: Integer;

ErrCode: Integer;

begin

grDriver := Detect;

InitGraph(grDriver, grMode,'F:\BP\PROGI\D1\');

end;

begin

x[1]:=-11.5;x[2]:=0;x[3]:=11.5;y[1]:=8;y[2]:=8;y[3]:=8;

r0:=0.0124; rf:=0.088; nf:=3;

Umod[1]:=500; Umod[2]:=500; Umod[2]:=500;

Uarg[1]:=0; Uarg[2]:=120; Uarg[3]:=240;

h:=15; Xm:=0; Ym:=2;

LNA:=-20; LK:=20;

clrscr;

for i:=1 to 3 do

begin

Write('X',i,'=');

readln(x[i]);

Write('Y',i,'=');

readln(y[i]);

Write('Umod',i,'=');

readln(Umod[i]);

Write('Uarg',i,'=');

readln(Uarg[i]);

end;

Write('R0=');

readln(R0);

Write('Ln=');

readln(LNA);

Write('Lk=');

readln(LK);

Write('Y=');

readln(Ym);}

for i:=1 to 3 do

begin

Ur[i]:=Umod[i]*cos(Uarg[i]*Pi/180);

Ui[i]:=Umod[i]*sin(Uarg[i]*Pi/180);

writeln('Ur',i,'=',Ur[i]:10:10);

writeln('Ui',i,'=',Ui[i]:10:10);

end;

clrscr;

st:=round(e/15+0.5);

Xm:=1;

DL:=(LK-LNA)/(e-1);

for k:=1 to e do

begin

Xm:=LNA+(k-1)*DL;

DZ:=64/sqrt(50*0.0001);

for i:=1 to 3 do

begin

delta1[i]:=sqr(x[i]-Xm)+sqr(y[i]-Ym);

delta[i]:=sqr(x[i]-Xm)+sqr(y[i]+Ym+DZ);

Cx[i]:=(Xm-x[i])/delta1[i]-(Xm-x[i])/delta[i];

Cy[i]:=(Ym-y[i])/delta1[i]-(Ym+y[i]+DZ)/delta[i];

end;

Exr:=con*(Ur[1]*Cx[1]+Ur[2]*Cx[2]+Ur[3]*Cx[3]);

Exi:=con*(Ui[1]*Cx[1]+Ui[2]*Cx[2]+Ui[3]*Cx[3]);

Eyr:=con*(Ur[1]*Cy[1]+Ur[2]*Cy[2]+Ur[3]*Cy[3]);

Eyi:=con*(Ui[1]*Cy[1]+Ui[2]*Cy[2]+Ui[3]*Cy[3]);

Exmod:=sqrt(sqr(Exr)+sqr(Exi));

Eymod:=sqrt(sqr(Eyr)+sqr(Eyi));

Fix:=arctan(Exi/Exr);

Fiy:=arctan(Eyi/Eyr);

A:=sqr(Exmod)*cos(2*Fix)+sqr(Eymod*cos(2*Fiy));

B:=sqr(Exmod)*sin(2*Fix)+sqr(Eymod*sin(2*Fiy));

Tmax:=arctan((A+sqrt(sqr(A)+sqr(B)))/B);

Tmin:=arctan((A-sqrt(sqr(A)+sqr(B)))/B);

Emax:=sqrt(2)*(sqrt(sqr(Exmod)*sqr(sin(Tmax+Fix))+sqr(Eymod)*sqr(sin(Tmax+Fiy))));

Emin:=sqrt(2)*(sqrt(sqr(Exmod)*sqr(sin(Tmin+Fix))+sqr(Eymod)*sqr(sin(Tmin+Fiy))));

Emaxkor2:=Emax/sqrt(2);

g[1,k]:=Xm;

g[2,k]:=Emaxkor2;

---------------------------------

writeln('Exr=',Exr:20:20);

writeln('Exi=',Exi:20:20);

writeln('Eyr=',Eyr:20:20);

writeln('Eyi=',Eyi:20:20);

writeln('Exmod=',Exmod:20:20);

writeln('Eymod=',Eymod:20:20);

writeln('Fix=',Fix:20:20);

writeln('Fiy=',Fiy:20:20);

writeln('A=',A:2);

writeln('B=',B:20:20);

writeln('Tmax=',Tmax:20:20);

writeln('Tmin=',Tmin:20:20);

writeln('Emax/koren iz 2=',Emaxkor2:20:20);

readln;

---------------------------------

if k>1 then goto tabl;

clrscr;

writeln('Rashet elektricheskogo polia na visote',Ym:2:2,'m ot zemli.');

writeln('');

writeln(c1);

writeln('| X | Emax | Emin | Emax/koren iz 2 | Ex | Ey |');

writeln('| m | kV/m | kV/m | kV/m | kv/m | kV/m |');

writeln(c1);

tabl:

if k mod st =0 then

writeln('| ',Xm:9:3,' | ',Emax:9:3,' | ',Emin:9:3,' | ',Emaxkor2:15:3,' | ',Exmod:9:3,' | ',Eymod:9:3,' |');

end;

writeln(c1);

writeln('Konec rascheta.');

readln;

----------------------------------------------------------------

graphika;

setcolor(13);

line(round(g[1,1]*15+getmaxx/2),round(getmaxy/2)+180,round(20*15+getmaxx/2)+15,round(getmaxy/2)+180);

line(round(g[1,1]*15+getmaxx/2),round(-10*12+getmaxy/2)+180,round(20*15+getmaxx/2),round(-10*12+getmaxy/2)+180);

line(round(g[1,1]*15+getmaxx/2),round(-20*12+getmaxy/2)+180,round(20*15+getmaxx/2),round(-20*12+getmaxy/2)+180);

line(round(g[1,1]*15+getmaxx/2),round(-30*12+getmaxy/2)+180,round(20*15+getmaxx/2),round(-30*12+getmaxy/2)+180);

setcolor(14);

outtextxy(round(g[1,1]*15+getmaxx/2),round(getmaxy/2)+167,'0 kV/m');

outtextxy(round(g[1,1]*15+getmaxx/2),round(-10*12+getmaxy/2)+167,'10 kV/m');

outtextxy(round(g[1,1]*15+getmaxx/2),round(-20*12+getmaxy/2)+167,'20 kV/m');

outtextxy(round(g[1,1]*15+getmaxx/2),round(-30*12+getmaxy/2)+167,'30 kV/m');

setcolor(13);

line(round(g[1,1]*15+getmaxx/2),round(getmaxy/2)+180,round(g[1,1]*15+getmaxx/2),round(-30*12+getmaxy/2)+165);

line(round((g[1,1]+10)*15+getmaxx/2),round(getmaxy/2)+180,round((g[1,1]+10)*15+getmaxx/2),round(-30*12+getmaxy/2)+180);

line(round((g[1,1]+20)*15+getmaxx/2),round(getmaxy/2)+180,round((g[1,1]+20)*15+getmaxx/2),round(-30*12+getmaxy/2)+180);

line(round((g[1,1]+30)*15+getmaxx/2),round(getmaxy/2)+180,round((g[1,1]+30)*15+getmaxx/2),round(-30*12+getmaxy/2)+180);

line(round((g[1,1]+40)*15+getmaxx/2),round(getmaxy/2)+180,round((g[1,1]+40)*15+getmaxx/2),round(-30*12+getmaxy/2)+180);

setcolor(14);

outtextxy(round((g[1,1]+10)*15+getmaxx/2),round(getmaxy/2)+183,'-10');

outtextxy(round((g[1,1]+20)*15+getmaxx/2),round(getmaxy/2)+183,'0');

outtextxy(round((g[1,1]+30)*15+getmaxx/2),round(getmaxy/2)+183,'10');

outtextxy(round((g[1,1]+40)*15+getmaxx/2),round(getmaxy/2)+183,'20');

outtextxy(round((g[1,1])*15+getmaxx/2),round(getmaxy/2)+183,'-20');

setcolor(15);

for i:=2 to e do

line(round(g[1,i-1]*15+getmaxx/2),round(-g[2,i-1]*12+getmaxy/2)+180,round(g[1,i]*15+getmaxx/2),

round(-g[2,i]*12+getmaxy/2)+180);

readkey;

closegraph;

end.

19



Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее