150597 (594561), страница 4
Текст из файла (страница 4)
задаємося максимальною робочою температурою середи і за довідковими даними визначаємо температуру кристалла Та задаємося максимальною робочою температурою середи і за довідковими даними визначаємо температуру кристала ;
3) по довіднику визначаємо повний тепловий опір радіатора Rt;
4) задаємося висотою пластини і визначаємо коефіцієнт неравномерності прогрівання g за даними рис. 5.1; вибираємо охолоджуючий вентилятор; визначаємо температуру радіатора Тs :
5) обчислюємо коефіцієнт теплообміну випромінюванням і конвекцією;
5) визначаємо площу теплоотводящей поверхні радіатора за формулою:
5.2 Розрахунок системи охолоджування
Розрахунок системи охолоджування для чопперного стабілізатора реализованного на VT4 и D5 :
-
Pn=I1·0,5=42,8·0,5=21,4 (Вт)
-
Ta=20 oC;
-
Rt=0,5oC/Вт;
-
D=55(мм);
V=2(м/с);
= 20+(0,5·21,4)/0,98=30,9 oC;
5)
5)
Згідно із розрахунком обираємо радіатор Р5Ц :Ss=85 cм2; охолоджуючий вентилятор : KD12PTS;
5.3 Методика розрахунку трансформатору двотактового мостового перетворювача
Рисунок 5.2 – Схема двотактового мостового перетворювача
Рисунок 5.3 – Часові діаграми роботы двотактового мостового перетворювача
Працює перетворювач таким чином.
На інтервалі [0;tu] відкриті транзистори VT1, VT4 за рахунок струмів Iб1 і Iб4, що протікають в їх базах. До первинної обмотки 1—2 трансформатора Т прикладена напруга U1 = Un. Вторинна обмотка 3—5 має відведення від середньої точки (4). Полярності напруги такі, що діод VD5 відкритий, а діод VD5 закритий. До дроселя L прикладена напруга:
(5.11)
де
= w1/w2 — коефіцієнт трансформації від первинної обмотки з числом витків w1 до вторинної напівобмотці з числом витків w2; UH — напруга на навантаженні.
У обмотці 3—4 протікає лінійно наростаючий струм il дроселя L, середнє значення якого дорівнює струму навантаження iн. При чималій величині L можна вважати, що il ≈ iн (що зазвичай виконується). На інтервалі [0; tu] індукція В лінійно наростає від -Bмакс до Вмакс.
На інтервалі [tu; Т/2] закрито всі чотири транзистори VT1...VT4. Струмом дроселя il, який не може змінитися стрибком, відкриті діоди VD5 і VD5, причому струм дроселя розподіляється порівну між цими діодами (за умови ідеальної симетрії плечей випрямляча):
(5.12)
Оскільки до дроселя на даному інтервалі прикладена напруга Ul = -Uh, струм дроселя лінійно спадає.
Відповідно до закону повного струму можемо записати:
(5.13)
Учитуючи (5.12), отримаэмо:
Hlcp = w1i1 (5.14)
На інтервалі [Т/2; t'], тривалість якого рівна tu, струмом IБ2и Iб3 відкриваються транзистори VT2 і VT3. До первинної обмотки виявляється прикладеною напруга U1 = -Un. При цьому діод VD5 закритий, а діод VD5 відкритий, і через нього протікає лінійно наростаючий струм дроселя L.
Нарешті, на інтервалі [t'; T] всі транзистори знову виявляються закритими. Процеси, що відбуваються на цьому інтервалі, практично повністю повторюють процеси на інтервалі [tu; Т/2], за винятком того, що В = -Bмакс. Діоди VD1...VD4 виконують захисну функцію, оберігаючи транзистори VT1...VT4 від появи негативної напруги колектор — емітер.
Для знаходження амплітуди напруги Ua2 на вторинній полуобмотке трансформатора скористаємося регулювальною характеристикою перетворювача, яка для режиму безрозривного струму дроселя має вигляд:
(5.15)
Для того, щоб мати можливість регулювати напругу UH на навантаженні, доцільне номінальне значення tu вибрати рівним Т/4.
Форма струму вторинної напівобмотки трансформатора при Il≈ IH, tu= Т/4 має вигляд, показаний на мал. 5.4.
Малюнок 5.4 – Форма струму вторинної напівобмотки трансформатора
Знайдемо діюче значення струму вторинної напівобмотки :
(5.15)
Після обчислення інтегралів отримаємо:
iVD5=0,512·iH (5.17)
Коэфіциент трансформації від первинної обмотки до вторичної:
(5.18)
Знайдемо амплитуду струму iА1 первинної обмотки:
(5.19)
Знайдемо действующее значение i1 тока первинної обмотки (при tu = Т/4):
(5.20)
Тоді можемо знайти кількість витків первинної обмотки:
(5.21)
Знайдемо кількість витків вторинної напівобмотки :
(5.22)
Знайдемо розріз дротів первинної и вторинної обмоток за формулою :
(5.23)
Зовнішній діаметр семижильного дроту:
(5.24)
Загальний розтин по изоляції первинної обмотки:
(5.25)
Загальний розтин по изоляції вторинної обмотки:
(5.25)
Таким чином вільне вікно сердечника складатиме :
(5.27)
5.4 Розрахунок трансформатору
Необхідно отримати напругу UH= 400 В, струм iн= 40 А. Частоту перетворення оберемо f = 25 кГц (Т = 40 мкс).
За формулою (5.15) при tu= Т/4 знайдемо амплитуду напруги UA2 на вторинній напівобмотці трансформатора:
Знайдемо діюче значення струму вторинної напівобмотки за формулою (5.17):
iVD5=0,512·40=24,5 (A)
Коэфіциент трансформації від первинної обмотки до вторинної за формулою (5.18):
Знайднмо амплитуду струму iА1 первинної обмотки за формулою (5.19):
Знайдемо діюче значення i1 струму первинної обмотки (tu = Т/4) за формулою (5.20):
Задамося сердечником :Sc=780 (мм2), Sо=1800 (мм2).Тип феррита – 1500НМЗ,броневой. Задамося максимальним значенням индукції у сердечнику Вмакс = 0,2 Тл. Значення напруженості Нмакс при цьому буде знаходитися в интервалі 40...80 А/м. Для будь якого ферита кс= 1.Із довідника: k0=0,2;j = 3 (A/мм2).
Знайдемо кількість витків первинної обмотки за формулою (5.21):
Знайдемо кількість витків вторинної напівобмотки за формулою (5.22):
Таким чином, вторинна обмотка повинна містити 52 витки з відведенням від середньої точки.
Знайдемо перетин дротів первинної і вторинної обмоток за формулою (5.23):
Як дріт первинної обмотки використовуватимемо дріт, скручений з семи дротів ПСДК, кожен з яких має діаметр d1ж = 1,5 мм (діаметр жили по ізоляції dіз =1,57 мм). Перетин такого семижильного дроту:
Вживання семижильного дроту дозволяє забезпечити достатню гнучкість дроту і понизити втрати від поверхневого ефекту. Вибрана кількість жил забезпечує рівномірність укладання жил при скручуванні.
Визначимо зовнішній діаметр семижильного дроту за формулою (5.23):
Як дріт вторинної обмотки використовуватимемо дріт марки ПСД перетином 3,44 мм, ізольований стрічкою з липкої склолакоткані марки ЛСКЛ-155 завтовшки 0,15 мм, укладеною з 50%-ним перекриттям. Діаметр по ізоляції такого дроту складає d2із≈ 4мм.
Перевіримо розташованість обмоток у вікні сердечника. Як ізоляцію сердечника використовуватимемо склолакоткань марки ЛСЕ-105/130 завтовшки ∆из = 0,15 мм, укладену з 50%-ним перекриттям.У сердечника мають бути зняті гострі кромки.
Першою будемо мотати первинную обмотку.
Загальний розтин по изоляції первинної обмотки визначемо за формулою (5.25):
Поверх первинної обмотки накладемо міжобмоточну ізоляцію із склолакоткані ЛСЕ-105/130 завтовшки 0,15 мм з 50% -ним перекриттям.
Спільний перетин по ізоляції вторинної обмотки визначимо по формулі (5.25):
Згідно з формулою (5.27) вільне вікно сердечника буде складати :
Це значить що ми маємо десь 40% вільного вікна.
6 КОНСТРУКТОРСЬКО-ТЕХНОЛОГІЧНА ЧАСТИНА
Система управління потужним джерелом живлення конструктивно виконана у вигляді окремого герметично закритого блоку і кріпиться на правій стійці установки за допомогою несучої панелі трьома гвинтами. Всі електричні з'єднання з датчиками і виконавчими механізмами здійснюється за допомогою роз'єднань. Корпус пристрою виготовлений з матеріалу СН-28Г, литвом під тиском на термопласт автоматі за вказаними розмірами. Для встановлення елементів управління на передній панелі за допомогою свердлувального верстата типа 2Н118Г проводимо свердління отворів. Для установки пристрою індикації на передній панелі прорізаємо отвір за допомогою фрезерного верстата СФ676. Несуча панель виготовляється із сталі марки СТ3 по ГОСТ 9543-60 завтовшки три міліметри за допомогою різного устаткування. На початку проводимо розмітку стандартного листа із сталі по необхідних розмірах. Після проводиться розмітка отворів і вікна під установку пристрою індикації. Після цього за допомогою фрезерного верстата типа СФ676 вирізуємо вікно і за допомогою свердлувального верстата типа 2Н118Г свердлимо необхідні отвори. Після цього в отворах, призначених для кріплення корпусу, нарізуємо різьбу. Після закінчення обробки проводимо знімання задирок і знежирення виготовленої деталі.Після цього,за допомогою краскопульту фарбуємо металічні частини корпусу грунтом №138 ГОСТ 4056-48.Після сушильної камери, за допомогою краскопульту фарбуємо сірою емаллю МЛ-12 ГОСТ 9854-64.Після цього знову запікаємо у термокамері при температурі 140 оС на протязі 20 хвилин. Після цього проводимо зборку.
7 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ЭФФЕКТИВНОСТИ РАЗРАБОТКИ ПРИБОРА «МОЩНЫЙ ИСТОЧНИК ПИТАНИЯ»
7.1 Цель и назначение
Целью данной работы является разработка источника вторичного электропитания. Прибор относится к электротехнике, а именно к источникам питания, и может быть использован в трехфазных сварочных полуавтоматах и аппаратах механизированной сварки плавящимся электродом, а также электрогальванике, для заряда аккумуляторных батарей и в других случаях, когда требуется мощный источник стабилизированного тока или напряжения, обладающий высокими показателями стабилизации и КПД.
7.2 Расчет себестоимости и цены изделия















