147176 (594273), страница 6

Файл №594273 147176 (Модернизация подвески автомобиля ЗАЗ1102 Таврия) 6 страница147176 (594273) страница 62016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Auн = Asu – Ayu = - 47,83 – 118,84 = -166,67 Н.

Aquer = √Au² + At² = √(- 166,67)² + (- 18,04)² = 167,64 Н.

Осуществляем проверку разложения сил на составляющие:

√Ахо² + Ауо² + Аzo² = √Au² + At² + F1² ;

√(-51,62)² + 800,84² + 0² = √(-166,67)² + (-18,04)² + 784,77² .

802,5=802,5

Теперь необходимо сложить все силы, действующие в одной точке.

5.2.3 Определение сил в направляющей и на поршне

амортизатора при верхних значениях сил длительного действия


РРис. 5.2. Силы в направляющей и на поршне амортизатора при верхних значениях сил

Изгибающий момент в штоке амортизатора будет складываться из двух составляющих: в направлении U и в направлении Т.

Силы в направляющей втулке штока амортизаторной стойки:

С u = А u · ℓ′ / (ℓ′ – о′) = 1140,74 ∙ 0,347 / (0,347 – 0,136) = 1876 Н

Сt = Аt ∙ ℓ′ / (ℓ′ – о′) = 502,39 ∙ 0,347 / (0,347 – 0,136) = 826,21 Н.

Силы, действующие на поршень:

Кu = С u - А u = 1876 – 1140,74 = 735,26 Н

Кt = Сt - Аt = 826,21 – 502,39 = 323,82 Н.

5.2.4 Определение сил в направляющей и на поршне

амортизатора при нижних значениях сил длительного действия


Рис. 5.3. Силы в направляющей и на поршне амортизатора при верхних значениях сил

Так как нижние значения сил в точке А в направлениях U и Т отрицательны, т. е. направлены противоположно соответствующим им силам верхних значений нагрузок, то сразу можно определить знакопеременный характер нагружения штока амортизатора. Учитывая истинное направление сил нижних значений нагрузок:

С u = А u · ℓ′ / (ℓ′ – о′) = 166,67 ∙ 0,347 / (0,347 – 0,136) = 274,1 Н;

Сt = Аt ∙ ℓ′ / (ℓ′ – о′) = 18,04 ∙ 0,347 / (0,347 – 0,136) = 29,67 Н.

Силы, действующие на поршень:

Кu = С u - А u = 274,1 – 166,67 = 107,43 Н

Кt = Сt - Аt = 29,67 – 18,04 = 11,63 Н.

5.2.5 Преобразование знакопеременной нагрузки


Рис. 5.4. Схема знакопеременных нагрузок действующих на шток и поршень

Определяем приведенные силы при знакопеременной нагрузке в направлениях U и Т (рис. 5.4).

Аuw = 0,58 А + 0,42 Аuu = 0,58∙1140,74+0,42∙166,67 = 731,63 Н.

Аtw = 0,58 Аto + 0,42 Аtu= 0,58 · 502,39 + 0,42 · 18,04 = 298,96 Н.

В формуле учтены отрицательные значения коэффициента 0,42 и противоположно направленных сил.

Результирующая знакопеременных нагрузок:

Аw = √Аuw² + Аtw² = √731,63² + 298,96² = 790,35 Н

Момент, изгибающий шток:

Млw = Аw · о′ = 790,35 · 0,136 = 107,49 Н∙м

В завершение следует определить минимальный для данного случая диаметр штока и убедиться, что имеющиеся напряжения не превышают допустимые.

В качестве материала штока применяем среднеуглеродистую, качественную сталь 40, обладающей следующими свойствами: σb min=568,98 Мпа, εs = 333,54 Мпа, δs=19% . Выбранная сталь дает отличные результаты при высокочастотной закалке, что для штоков амортизаторов весьма важно.

Допустимые напряжения:

σb = 0,6 σb min b1 b2 / (βКb · υ)=0,6 · 568,98 · 0,94 · 0,95 / (1 · 1,2) = 254,05 Мпа.

где 0,6 – коэффициент, справедливый для поверхностного упрочнения и вводится при использовании твердого хромирования штока амортизатора;

b1 = 0,94 – масштабный коэффициент, отражающий снижение предела выносливости с увеличением диаметра; определен для Ø 20 мм;

b2 – коэффициент, учитывающий шероховатость поверхности, обусловленную технологией обработки. При σb min = 700 МПа и высоте микронеровностей поверхности штока Rt = 6 мкм b2 = 0,95;

βКb = 1 – коэффициент концентрации напряжений;

υ = 1,2 – коэффициент запаса прочности, обусловленный способностью поверхностного слоя при его упрочнении выдерживать в течение длительного времени возросшие примерно на 20% напряжения.

σb =

Чтобы иметь шток, упрочненный закалкой ТВЧ на 3 мм, принимаем минимальный его диаметр dmin = 20 мм.

Фактические напряжения от изгиба:



σb ф =136,86< σb=254,05

Условие усталостной прочности выполнено.

5.2.6 Определение сил, действующих на резиновые

шарниры рычага

Благодаря тому, что рычаг не воспринимает действие пружины, действующие на него и шарниры силы можно рассмотреть в плоскости.

1. Определение верхних значений сил, действующих на резиновые шарниры.

При расчете рычага приняты следующие размеры (рис. 5.5 ): Lр = 325 мм; к = 120 мм.

Сумма моментов относительно точки D:

ΣМD: В′хуо ∙ к – В′ Lр= 0;

Рис. 5.5 Схема для определения верхних значений сил действующих на рычаг и резиновый шарнир.

│В′хуо│= Вхуо = √ Вхо² + Вуо² =

=√2871,09²+ 179,78² =2876,71 Н;

│В′zо│= Вzо = 521,43 Н.

∑МB=В’хуо∙к–Dzo∙Lp=0

;

∑MB=-B’zo∙Lp+Dxyo∙к=0

2 Определение нижних сил, действующих на резиновые шарниры

Р

u

u


ис. 5.6 Схема для определения нижних значений сил действующих на рычаг и резиновый шарнир.

│В′xуu │= Вxу u = √ Вx u ² + Ву u ² =

= √(- 1032,62)² + (- 64,66)² = 1034,62Н;

│В′z u │= Вzu = 352,8 Н.

ΣМВ´ = В′ху u ∙ к – Dzo ∙ Lp = 0;

ΣMB =-В′zu∙Lp+Dxyo∙к= 0;

Расчет резинового шарнира будем производить по максимальной длительно действующей нагрузке в нем, т. е. при радиальной силе р = Dхуо = =1412,21 Н.

5.2.7 Определение напряжений и деформаций

резиновых втулок – шарниров

Исходя из конструктивных соображений и рассматривая конструкцию существующих резиновых втулок, принимает размеры втулок (рис. 5.7 ).


Рис. 5.7. Конструкция ручно-механической втулки рычага подвески.

1 – обойма рычага, 2 – резиновый элемент, 3 – внутренняя обойма.

Резиновая втулка работает на кручение и воспринимает радиальную и осевую нагрузки. Втулки такого типа можно отнести к шарнирам с равными касательными напряжениями.

Определяем крутильную жесткость шарнира по формуле:

где G = 0,9 МПа – модуль сдвига для радиан.

Напряжения сжатия при действии рациональной нагрузки:

где [σсж ]=1,75 МПа – допускаемые статические напряжения сжатия для резины с твердостью по Шору 60 ед.

Как указывается в литературе [ 5 ], угловое пересечение по дуге наружного радиуса не должно превышать толщины элемента. Углы закрутки резиновых элементов определяются по кинематической схеме подвески. Наибольший угол при ходе колеса Sот (отбоя) = 85 мм составил:

сtg φ =3,8936 ; φ = 14°27′ или φ = 0,24906 рад.

Тогда угловое перемещение наружной поверхности резинового элемента составит:

Вывод: при принятых размерах резиновых элементов, напряжения при сжатии, деформации и скручивании не превышают допустимых значений — это обеспечивает долговечность шарниров.

5.3 Расчет на прочность

При расчетах на прочность сопоставляют фактические и допустимые напряжения, чтобы гарантировать долговечность детали и убедиться в том, что даже при максимальных нагрузках не произойдет ее пластической деформации. Это может иметь место при условии, если будет превышено временное сопротивление или предел текучести материала: σф σдоп.

При изгибе или совместном действии различных нагрузок: σдоп = σо / υ.

В качестве предельных значений следует использовать σbs = 1,2 σs.

При расчетах на прочность принимается υ ≥ 1,5.

5.3.1. Кратковременно действующие силы.

Для определения наибольших значений сил, действующих в подвеске «Макферсон», следует рассмотреть три случая: движение по дороге с выбоинами (случай 3 [1]); преодоление железнодорожного переезда (случай 2 [1]); торможение с блокировкой колес с начальной скорости V ≤ 10 км/ч (случай 5 [1]).

5.3.2. Силы, возникающие при движении по дороге с выбоинами.

В представленном в этом параграфе случае нагружения 3, подвеска вновь рассматривается в нормальном положении. По-прежнему используем вертикальную силу NV'о = К1 NV – (Uv / 2) = 4,43 кН, однако вместо S1 использовать максимальное значение боковой силы S2 = µF2 Nv, а вместо продольной силы LА1 силу

LА4 = Mt4 / rд = Md max i2 iD iгл ηтр / (4 rд) = 80 · 2,056 · 3,588 · 0,9224 / (4 · ∙0,282) = 482,59 Н.

S2 = 2,48 кН.

Итак, методика расчета соответствует приведенной, с исключениями: вместо S1 действует S2 , а вместо LА1 - LА4.

Используя приведенный на рис.5.1 вид сзади, учитывая, что Вх3у3сtg β, уравнение моментов относительно точки А:

Вх3у3∙ctgβ=307,91 · 15,97 = 4917,32 Н.

где f = (с + о) cos δo tg ε = 0,612∙0,9659∙0,0524=0,030975;

е = [(с + о) cos δo + d – rд] tg ε=(0,612∙0,9659+0,203-0,282)∙0,0524=0,026836.

В точке А действуют взаимно перпендикулярные силы:

Ах3 = В х3 - S2 ; Ау3 = Ву3 + NV о; Аz3 = Вz3 - LA4

Ах3 = 4917,32 – 2480; Ау3 = 307,91 + 4327,5; Аz3 = 662,73 – 482,59;

Ах3 = 2437,32 Н Ау3 = 4635,41 Н Аz3 = 180,14 Н.

Эти силы раскладываем в направлениях оси амортизатора и перпендикулярно к ней, аналогично проводимым ранее:

Ауu = Ay3 · sin υ = 4635,41 · 0,1484 = 687,75 Н.

Ayv = Ay3 · cos υ = 4635,41 · 0,9889 = 4583,96 Н.

Axs = Ax3 · sin æ = 2437,32 · 0,937 = 2283,77 Н.

Axt = Ax3 · cos æ = 2437,32 · 0,3494 = 851,6 Н.

Azs = Az3 · cos æ = 180,14 · 0,3494 = 62,94 Н.

Azt = Az3 · sin æ = 180,14 · 0,937 = 168,79 Н.

As = Azs + Axs = 62,94 + 2283,77 = 2346,71 Н.

At = Axt – Azt = 851,6 – 168,79 = 682,81 Н.

Asu = As · cos υ = 2346,71 · 0,9889 = 2320,66 Н.

Asv = As · sin υ = 2346,71 · 0,1484 = 348,25 Н.

F1 = Ayv + Asv = 4583,96 + 348,25 = 4932,21 Н.

Au = Asu – Ayu = 2320,66 – 687,75 = 1632,91 Н.

Осуществляем проверку разложения сил:

√Ах3² + Ау3² + Аz3² = √Au² + At² + F1² ;

Характеристики

Тип файла
Документ
Размер
80,09 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее