147119 (594265), страница 6
Текст из файла (страница 6)
h =2,5 м - разность между уровнем жидкости в баке и входным штуцером насоса;
γ = 834 кг/м3 = 8173,2 Н/м3 - удельный вес жидкости АМГ-10 при t=20°C;
ΣPn - сумма потерь давления во всасывающей магистрали;
Ивх = 3 м/с - скорость течения гидрожидкости во всасывающей магистрали. Выбрана согласно рекомендациям, приведенным в литературе;
g =9,8 м/с2 - ускорение свободного падения;
Рк - критическое давление, при котором поступает активное выделение воздуха из жидкости. Практически значение Рк может быть принято равным 400 мм рт.ст или Рк=53000 Па.
Потери давления во всасывающей магистрали складываются из потерь давления в:
-
шланге и трубопроводах;
-
закруглениях трубопроводов;
-
холодильнике;
-
самозапирающейся муфте;
-
расходомере-вискозиметре;
-
тройниках;
-
фильтрующем устройстве;
-
присоединительной арматуре.
Для расчета потерь в трубопроводах установки необходимо помимо длины знать их диаметр и характер течения жидкости. Расход жидкости через сечение трубопровода:
Q=( d /4)* Ивх
Где: d - диаметр трубопровода
(**)
За расчетную величину расхода жидкости Q примем его максимальное значение Q=110 л/мин, или в системе СИ: Q=0,0018 м3/с
Для определения характера течения жидкости в трубопроводе воспользуемся критерием Рейнольдса. Число Рейнольдса
Re=И d/
Где: v = 3,04°Е при температуре t=20°C - кипнематическая вязкость жидкости АМГ-10;
3,04 градуса Энглера соответствуют 21,2 сст или 0,212 см2/с.
Выражая входные величины формулы в сантиметрах и секундах, получим:
Re = 300*31,2/0,212 = 44151
Поскольку полученное число Re больше критического значения 2300, то можно заключить, что поток в трубопроводах и шлангах установки будет носить турбулентный характер.
Значение числа Re попадает в интервал от 2300 до 80000, следовательно потери на трение в трубопроводах зависят от числа Re.
По формуле Блазиуса коэффициент сопротивления при турбулентном течении:
λ = 0,3164*
λ = 0,3164*44151-0,25 = 0,0218
Потери давления на трение в шланге и трубопроводах определяются из выражения
Ртр= (L/d)*(И
/2g)
Где: L - суммарная длина коммуникаций во всасывающей линии. Примем L=8,8 м (складывается из 5 м длины шланга, соединяющего самолет с установкой и 3,3 м трубопроводов внутри установки и самолета).
Р =0,0218*8173,2(8,8/0,0312)*(9*2*9,8) = 23076 (Па)
Потери на преодоление местных сопротивлений:
Р = *(И
/2g)
Где: ξ - коэффициент местного сопротивления, зависящий от вида последнего. Значение ξ определяется из справочной литературы.
Потери на закруглениях трубопровода на 90° при относительном радиусе изгиба r/d=2, ξ =0,15, количество закруглений во всасывающей магистрали - 5 шт.
Р = 5-0,15*(3
*8173,2)/(2*9,8) = 2814,8 (Па)
Потери давления в холодильнике, ξ = 3,5:
Р = 3,5*(3
*8173,2)/(2*9,8) = 13135,5 (Па)
Потери давления в самозапирающейся муфте, ξ =1,2:
Р = 1,2*(3
*8173,2)/(2*9,8) = 4503,6 (Па)
Потери давления в расходомере-вискозиметре, ξ =0,4:
Р = 0,4*(3
*8173,2)/(2*9,8) = 1501,2 (Па)
Потери давления в тройниках (2 штуки), ξ =0,25:
Р = 0,5*(3
*8173,2)/(2*9,8) = 1876,5 (Па)
Максимальные потери давления в фильтрующем устройстве составляют 4 кг/см2 или 392000 Па - при указанном перепаде открывается клапан перепуска. Таким образом ΔРф = 392000 Па.
Потери давления в присоединительной арматуре, ξ = 0,1:
Р = 10*0,1*(3
*8173,2)/(2*9,8) = 3753 (Па)
Таким образом, суммарные потери давления во всасывающей магистрали составляются из:
Р =
И равны:
Рп = 2814,8+13135,5+23076+4503,6+1501,2+
+1876,5+392000+3753 = 44660,4 (Па)
Введем обозначение:
А = Р + h - P
- (И2вх /2g)
А = 225400+2,5*8173,2-442660,4-(32*8173,2)/(2*9,8) = 200584,4 (Па)
Из условия (*) определяем, требую степень повышения давления насосом подкачки:
Рн Рк-А
Откуда
Рн 2535844 Па
Произведенный выше расчет всасывающей линии насоса учитывал работу установки в основном режиме и в режиме проверки, т.е. когда гидрожидкость поступала к качающему узлу из гидробака самолета Ту-154, имеющего наддув сжатым воздухом. При работе установки в режиме заправки, забор жидкости осуществляется из бака стенда. Давление в нем равно атмосферному. Вследствие этого возникает необходимость расчета всасывающей линии при работе установки в режиме заправки. Условие бескавитационной работы нагнетающего насоса остается тем же, но величины, входящие в него изменяются.
Поскольку базовый аэродром может находиться на различной высоте над уровнем моря, то примем давление внутри бака Рб =70121 Па, что соответствует высоте 3000 м по таблице международной стандартной атмосферы.
Изменится также разность между уровнем жидкости в баке и входным штуцером насоса h. Она станет h' = 0,6 м.
Суммарная длина трубопроводов сократится и станет L'=l,9 м. Вследствие этого изменится и величина потерь на трение в коммуникациях, определяемая по формуле:
Р' =0,0218*8173,2*(1,9/0,0312)*(3/2
*9,8)=4982 Па
Количество изгибов трубопровода сократится до 3-х, и величина потерь давления на них составит:
Р = 3*0,15*(3
*8173,2)/(2*9,8) = 1688,9 Па
К суммарным добавятся потери давления на гидравлическом кране
=0,5
Р = 0,5*(32*8173,2)/(2*9,8) = 1876,5 Па
Потери давления на присоединительной арматуре ΔРпа останутся такими же.
Суммарные потери давления в линии всасывания при работе установки в режиме заправки:
Р' = Р'тр + Р'изг+ Рх + Ррв + Рт + Рф+ Рпа+ Ркр
И равны:
Р' = 4982+1688,9+13135,5+1501,2+1876,5+392000+3753+1876,5 = 420813,8 Па
Введем обозначение:
А'= Р'б + h' - P' - (И вх /2g)
А' = 70121+0,6*8173,2-420813,8-(3 *8173,2)/(2*9,8) = -349541,9 (Па)
Pн 402541,9 (Па
Таким образом, потребное повышение давления подкачивающим насосом при работе установки в режиме заправки значительно превышает этот же показатель при работе в режиме очистки или проверки.
В качестве подкачивающего насоса можно использовать лопастной, приводимый от индивидуального электродвигателя. Режим работы электродвигателя предлагается, изменять вместе с режимом работы установки. Таким образом достигается экономия электроэнергии и отпадает необходимость в системе наддува гидробака установки, что существенно снижает ее стоимость и упрощает обслуживание.
Диаметр трубопровода линии нагнетания определяется из выражения (**). Изменяется значение скорости потока жидкости. Оно становится И =8 м/с.
Расчет производится по методике, изложенной в источнике [5].
3 ОХРАНА ТРУДА.
3.1 Экспертиза безопасности рабочей зоны при техническом обслуживании гидрооборудования самолета Ту-154 (в соответствии с ОСТ 54 71001-82)
При выполнении технического обслуживания гидрооборудования самолета Ту-154 согласно „правил безопасности труда при техническом обслуживании и ремонте авиационной техники" на технический персонал АТБ возможно воздействие следующих опасных и вредных производственных факторов:
-
движущиеся самолеты, спецавтотранспорт, самоходные механизмы;
-
незащищенные подвижные элементы самолетов (элероны, интерцепторы, закрылки, рули, стойки шасси и т.д.), спецавтотранспорта, а также механизмов и производственного оборудования;
-
разлетающиеся осколки, элементы, детали производственного оборудования;
-
падающие изделия авиационной техники, инструмент и материалы при работе на значительной высоте над землей при обслуживании агрегатов, установленных на стабилизаторе, в киле, двигателях);
-
ударная волна (взрыв сосудов, работающих под давлением, паров горючей жидкости);
-
струи отработавших газов авиадвигателей и предметы, попавшие в них;
-
истекающие струи газов и жидкостей из сосудов и трубопроводов, работающих под давлением;
-
обрушивающийся самолет (с подъемников или при ошибочной уборке шасси);
-
разрушающиеся конструкции (бортовые лестницы, стремянки и другое производственное оборудование);
-
высоко расположенные части самолета;
-
повышенное скольжение (вследствие обледенения, увлажнения и замасливания поверхностей самолетов, трапов, стремянок, покрытий мест стоянок и т.д.);
-
повышенная запыленность и загазованность воздуха в зоне технического обслуживания;
-
пониженная температура поверхностей AT, оборудования и материалов;
-
повышенный уровень шума, вибрации;
-
повышенный уровень статического электричества;
-
расположение рабочего места на значительной высоте относительно поверхности земли;
-
острые кромки, заусеницы и шероховатости на поверхностях самолетов, оборудования и инструментов;
-
отсутствие или недостаток естественного света;
-
химические вещества, входящие в состав применяемых материалов, горюче-смазочные материалы, проникающие в организм через органы дыхания, желудочно-кишечный тракт, кожные покровы и слизистые оболочки.
Жидкость АМГ-10 на 92 % состоит из нефтяной фракции. Концентрация паров углеводородов до 9 мг/м3 в воздухе при длительном воздействии на организм человека может вызвать ряд отклонений, таких как изменение светочувствительности сетчатки глаз, изменение электромагнитной активности головного мозга.
3.2 Технические и организационные меры по уменьшению уровня воздействия опасных и вредных факторов
К наиболее опасным и вредным производственным факторам 154 согласно „правил безопасности труда при техническом обслуживании и ремонте авиационной техники" воздействующим на персонал АТБ в процессе ТО гидросистемы самолета Ту-154 молено отнести следующие:
-
воздействие паров жидкости АМГ-10;
-
разлетающиеся осколки и элементы производственного оборудования;
-
истекающие струи жидкостей и газов из трубопроводов и сосудов, работающих под высоким давлением;
-
незащищенные подвижные элементы производственных механизмов;
-
повышенный уровень шума;
-
повышенное значение напряжения в электрической сети применяемых стендов, замыкание которой может произойти через тело человека;
-
движущиеся механизмы.
Снижение уровня воздействия вышеперечисленных факторов на работающих может быть достигнуто путем внедрения предлагаемых настоящем дипломном проекте разработок.
Повышение уровня контролепригодности гидравлического оборудования самолета Ту-154 за счет постановки датчиков перепада давления на гидравлических фильтрах, а также установки приборов контроля внутренней негерметичности в сливных линиях отдельных распределительных агрегатов, на гидронасосах НП-89Д и насосных станциях НС-46 (лист 2 графической части проекта) позволит осуществлять контроль технического состояния указанных агрегатов без их демонтажа с борта самолета, что исключит контакт работающих с жидкостью АМГ-10, а также сократит время пребывания работника в рабочей зоне.
Использование стенда для очистки гидрожидкости (лист 6 графический части проекта) увеличивает периодичность ее замены, что уменьшает вероятность ее пролива и снижает воздействие паров АМГ-10 на исполнителей.
Использование на предлагаемом стенде (лист графической части проекта) подкачивающего насоса в линии всасывания снимает наддува, в оборудовании гидробака установки системой наддува, что упрощает процесс ее обслуживания и исключает возможность поражения работающих разлетающимися осколками сосудов, работающих под высоким давлением.