144758 (594120), страница 7

Файл №594120 144758 (Геоинформационная система "Компас-2" и возможности её использования для ведения природных кадастров России) 7 страница144758 (594120) страница 72016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

В растровом формате геометрия и атрибуты хранятся в одном файле: записи в нем организованы по строкам или столбцам растра, номера которых кодируют систему координат, а каждое число в записи кодирует уникальное значение атрибута, относящегося к одной ячейке растра (пикселу).

Сопоставление векторного и растрового форматов. Основные проб­лемы, обсуждаемые при выборе растрового или векторного форматов - это отображение реальности, точность координат, скорость аналитической обработки, потребности в объеме памяти, отражение характерных признаков явлений.

Обработка данных. Данные в растровых форматах обрабатываются быстрее при решении таких аналитических задач, как наложение (оверлей), определение соседства, выполнение логических запросов. Для определения взаимного положения объектов и их анализа в большинстве случаев требуется лишь сравнить содержание соответствующих ячеек растра в различных слоях БД с применением простейших условных операторов.

При построении векторной топологии приходится многократно выполнять однотипные вычисления и логические проверки, например, для нахождения точек пересечения отрезков линий, составляющих контуры объектов. Сложные алгоритмы необходимы и при наложении полигонов, для выявления ложных ("паразитных") полигонов. Эти обстоятельства удлиняют время обработки данных, запросов пользователей.

Хранение данных. Простейший метод хранения растровых данных требует 1-2 байтов памяти для каждого пиксела независимо от величины им представляемой, и в этом аспекте он не эффективен. В некоторых системах хранения существуют ограничения на число строк и столбцов. На практике применяются различные методы сжатия информации; наиболее распространенным из них является групповое кодирование, при котором степень сжатия зависит от пространственной изменчивости данных. Однако в некоторых случаях группового кодирования упаковка и распаковка данных дает лишь небольшое преимущество по сравнению с их поячеечным хранением.

Для хранения простых полигонов в векторном формате требуются небольшие объемы памяти; в общем случае необходимый ее объем зависит от сложности объектов, от того, что хранится вместе с координатами, а также от точности координат (одинарная или двойная). В целом векторные системы используют меньший объем памяти по сравнению с растровыми системами, графическое разрешение которых сопоставимо с векторными.

Растровые базы данных привлекают простотой организации, быстротой многих операций; они особенно привлекательны для специалистов в области дистанционного зондирования, привыкших оперировать пикселами при обработке информации, а также при представлении первичных и систематизированных данных о высотах рельефа. Растровый файл легко получить путем сканирования фотоотпечатков или бумажных карт. С другой стороны, во многих случаях растровый подход ведет к потере деталей. Растровые данные различных источников могут иметь разный размер элементов, ориентацию, положение, проекцию. В случае их совместного использования необходим процесс интерполяции информации из одной системы элементов растра в другую. При этом переход к элементам большего размера относительно безопасен, переход к меньшим элементам чреват большими неприятностями.

Хорошие результаты дает использование систем, в которых растровый и векторный анализ могут осуществляться параллельно с использованием функций преобразования (конвертирования) форматов. Такие системы позволяют, например, осуществить наложение векторной карты участков с различным типом использования земель на снимок для более точного его дешифрирования, а затем снимок использовать для корректировки векторной карты ареалов растительности.

Обменные форматы данных. Совместное использование разных источников данных (как векторных, так и растровых) связано с еще одним понятием формата данных - шаблоном представления их в файлах данных. Некоторые из них приняты государственными организациями как стандарты, другие определяются распространителями данных и разработчиками программных средств как внутренние форматы. Обилие таких форматов и уже накопленных данных делают чрезвычайно важной проблему разработки специальных обменных форматов и способов их конвертирования. Многие современные ГИС-пакеты представляют широкие возможности для конвертирования внутренних форматов, как в обменные, так и форматы других пакетов.

Графические форматы, используемые как обменные в разных ГИС- и графических пакетах программ, также делятся на векторные и растровые.

Среди векторных наибольшее распространение получил формат DFX пакета AutoCad, использующий для передачи атрибутивной информации формат DBF (Dbase), более подробные характеристики разных форматов можно найти в толковом словаре.

Преобразование данных других цифровых источников. Все больше данных появляется на магнитных носителях, CD-ROM, данных, доступных в сети Internet; (цифровые карты мира - DCW, цифровые картографические данные Геологической службы США - DLG, цифровые космические снимки, так называемые Quicklook, и многие другие).

Нужно помнить, что пока изображения, распространяемые в Internet, зачастую имеют низкое разрешение, растровый формат и ограниченные размеры.

Истинное горизонтальное и вертикальное положение объектов обычно непосредственно определяется в результате полевой съемки. Система спутникового позиционирования (ССП) - новый способ точного определения положения объектов на земной поверхности. Положение объекта рассчитывается по сигналам, поступающим с серии ИСЗ (ГЛОНАСС, Россия, NAVSTAR или GPS, США) с точностью от метров до нескольких сантиметров. Она сопоставима с точностью самых крупномасштабных карт.

2.7.7.Качество данных и контроль ошибок

Представления о качестве данных, их точности и оценке погрешности становятся чрезвычайно важными при создании баз и банков данных ГИС. Существует практически всеобщая тенденция забывать об ошибках в данных, если последние представлены в цифровой форме. Все пространственные данные до некоторой степени неточны, но в цифровой форме они обычно представляются с высокой точностью, определяемой параметрами памяти компьютера. Необходимо каждый раз рассматривать два вопроса:

насколько правильно представляемые в БД цифровые структуры отражают реальный мир;

насколько точно алгоритмы позволяют рассчитать истинное значение результата.

Методы расчета точности определений по картам рассматриваются в курсе картографии, с понятиями надежности и качества географических данных полезно ознакомиться в работе. Показатели качества данных определяются стандартами. Основные из них: позиционная точность и точность атрибутов объектов, а также логическая непротиворечивость, полнота, происхождение, относящиеся к базе данных в целом.

2.7.8.Позиционная точность данных и типы ошибок

Позиционная точность определяется как величина отклонения измерения данных о местоположении (обычно координат) от истинного значения. При ее определении, как правило, исходят из масштаба исследования или первичного материала, например, в данных о природных ресурсах стремятся достичь точности карты заданного масштаба. Обеспечение большей точности требует более качественных исходных материалов, но всегда следует задаться вопросом, оправданы ли дополнительные затраты задачами исследования.

Точность координат определяется по-разному в растровом и векторном представлении.

Точность растра зависит от размера ячеек сетки. Для избежания потери информации можно использовать ячейки меньшего размера с тем, например, чтобы показать искусственные объекты, но следует оценить, что будет представлять выбранная ячейка в заданном масштабе. В большинстве случаев неясно, относятся ли координаты, представленные в растровом формате, к центральной точке ячейки или к одному из ее углов; точность привязки, таким образом, составляет 1/2 ширины и высоты ячейки.

Координаты в векторном формате могут кодироваться с любой мыслимой степенью точности; она ограничивается возможностями внутреннего представления координат в памяти компьютера. Обычно для представления используется 8 или 16 десятичных знаков (одинарная или двойная точность), что соответствует ограничению по точности соответственно до 1/108 и 1/1016 измерения на местности. Для получения такой же точности растра необходимо, соответственно, 108х108 или 1016х1016 ячеек, что невозможно даже при специальном сжатии данных. Но лишь некоторые классы данных соответствуют такой точности векторного представления: данные, полученные точной съемкой, карты небольших участков, составленные на основе крупно­масштабных топографических карт; лишь для немногих природных явле­ний характерны четкие границы, которые можно представить в виде математически определенных линий. Поэтому можно утверждать, что тонкие линии в векторном формате дают ложное ощущение точности. Обычно на карте толщина линии отражает неопределенность положения объекта. Поэтому в векторной системе фиксируется неопределенность положения векторного объекта, а не точность координат. В растровой системе эта неопределенность автоматически выражается размером ячейки, который и дает действительное представление о точности.

Точность базы данных. Почти каждый этап создания БД чреват вне­сением ошибок.

Карты не свободны от погрешностей, которые при цифровании авто­матически переносятся в базу данных; из-за генерализации они не всегда точно фиксируют информацию о местоположении объекта; несоответствия на границах листов могут обусловить несоответствия в базе данных.

Ошибки характерны для данных, взятых из некартографических ис­точников. Они могут появиться и при проведении инвентаризации по аэрофотоснимкам, если изображения дешифрированы неверно, часто возникают потому, что слишком велико доверие к базовым картам. Другие ошибки связаны с проблемой границ и погрешностями классификации. Многие ошибки обусловлены особенностями сбора данных. Ручной ввод цифровых данных весьма утомителен и трудно сохранять качество работы на протяжении долгого времени.

Для снижения ошибок в измерении местоположения используют гео­дезический контроль и системы спутникового позиционирования, а также создание массивов данных географической привязки. К последним предъявляют особенно высокие требования по точности и достоверности еще на этапе сбора исходной информации. Их применение в качестве основы для интеграции данных в известных оригинальных масштабах и проекциях не вызывает затруднений. Во всех других случаях требуется преобразование информации, которое должно выполняться по правилам картографической генерализации и согласования. Большая часть данных о местоположении берется с аэроснимков, при этом точность зависит от правильного размещения контрольных точек. Данные космической съемки труднее расположить с большой точностью - не позволяет разрешение снимка.

На весь набор данных влияют: ошибки регистрации и определения контрольных точек, преобразования координат, особенно когда неизвестна проекция исходного документа; ошибки обработки данных, неправильный логический подход, генерализация и проблемы интерпретации; математические ошибки; потеря точности представления из-за невысокой точности вычислений; перевод векторных данных в растровый формат.

В БД обычно используются данные из разных источников с разной сте­пенью точности. При наложении множества карт точность результирующего материала может оказаться очень низкой. Однако больший интерес представляет показатель пригодности полученной карты. Для некоторых типов операций степень пригодности карт определяется точностью наименее точного слоя БД. Показатель пригодности можно оценить также по его устойчивости при смене порядка ввода данных или изменении веса атрибута.

Часто возникают искусственные признаки ошибок (артефакты) - это нежелательные последствия применения высокоточных процедур для обработки пространственных данных, имеющих небольшую точность. Использование растровых данных позволяет застраховаться от артефактов до тех пор, пока размер элемента растра больше или равен позиционной точности данных. При работе с векторными данными артефакты возникают при кодировании (цифровании) и наложении по­лигонов.

Чтобы проверить позиционную точность, нужно использовать независимый, более точный источник, например, карту более крупного масштаба, данные спутникового позиционирования, первичные ("сырые") данные съемки. Для контроля можно использовать и внутренние признаки: незамкнутые полигоны, линии, проходящие выше или ниже узловых точек, и т. п. Величина этих погрешностей может служить мерой позиционной точности.

Наиболее надежным путем создания качественных БД, особенно для ее многократного и многопользовательского применения, является хранение информации о точности в самой БД в виде атрибутов или метаданных.

2.7.9.Точность атрибутивных данных

Точность атрибутов определяется как близость их к истинным показателям (на данный момент времени). В зависимости от природы данных точность атрибутов может быть проанализирована разными способами.

Для непрерывных атрибутов, представляющих модель поверхности, например, ЦМР, точность определяется как погрешность измерений по этой модели.

Для атрибутов объектов, выделяемых в результате классификации, точность выражается в оценках соответствия, определенности или правдоподобия. В случае двух объектов ситуация, в которой они представлены сочетанием 70% атрибута объекта А и 30% атрибута В, лучше, чем когда объекты А и В недостаточно определены, что не позволяет четко разграничить их. В общем случае для оценки точности атрибутов полезно составить матрицу ошибок классификации. Для этого нужно взять несколько случайных точек, определить их категорию по базе данных, затем на местности определить истинный класс и заполнить матрицу классификации (соответствия). Если, например, число классов 4, а число обследованных точек 100, из них на местности определено 25 точек класса А, 18 точек - В, 24 - С и 33 - О (табл. 1).

В идеале все точки должны располагаться по диагонали матрицы; это показывает, что на местности и в базе данных зафиксирован один и тот же класс. Ошибка пропуска возникает тогда, когда точки класса на местности неправильно зафиксированы в базе данных. В матрице

Таблица 1

Матрица классификации класса В равно сумме

Класс на местности

Класс в БД

А

В

С

0

Всего

А

12

7

3

3

25

В

3

10

3

2

18

С

3

5

15

1

24

0

4

4

4

21

33

Всего

22

26

25

27

100

записей в столбцах А, С и О строки В (числу точек, относящихся на местности к классу В, а в базе данных - к другим классам). Ошибка добавления(ложного класса) имеет место в случаях, когда в базе данных зафиксирован класс, которого нет на местности, например, для класса А - это сумма записей в строках В, С и О столбца А (соответствует числу точек, неправильно отнесенных к классу А в базе данных).

Для обобщения матрицы соответствия используют такой показатель достоверности классификации, как количество правильно классифицированных точек, расположенных по диагонали матрицы (в %). На самом деле это число может быть случайным. Чтобы учесть этот факт часто при обобщении результатов используют так называемый индекс к каппа Коэна, вносящий поправку на случайность. Он вычисляется по формуле:

K=(d-q)/(N-q) (1)

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее