144572 (594090), страница 4

Файл №594090 144572 (Разработка 4-этажного оздоровительного комплекса "Звезда" в п. Новомихайловке) 4 страница144572 (594090) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Qh=0.0864.Km.Dd.Aesum ,

Qh=0.0864. 0,778×1627×1846,3=2019221,78 (МДж).

26. Удельные бытовые тепловыделения qint, Вт/м2, следует устанавливать исходя из расчетного удельного электро- и газопотребления здания, но не менее 10 Вт/м2. Принимаем 10 Вт/м2.

27. Бытовые теплопоступления в здание за отопительный период, МДж:

Qint=0.0864.qint.Zht.Al=0.0864.10.113. 10316,6 = 8084,41 (МДж).

28. Теплопоступления в здание от солнечной радиации за отопительный период определяется по формуле (3.14).

Определим теплопоступления:

Qs=F.kF.(AF1I1+ AF2I2+ AF3I3+AF4I4)=0.65.0.9х178х974=101422,62 (МДж).

29. Потребность в тепловой энергии на отопление здания за отопительный период, МДж, определяют по формуле (3.6а) при автоматическом регулировании теплопередачи нагревательных приборов в системе отопления:

Qhy=[Qh– (Qint+Qs).У].h ,

Qhy=[2019221,78–(8084,41+101422,62).0.8].1.11=2144093,93 (МДж).

30. Удельный расход тепловой энергии на отопление здания qhdes, кДж/(м2.0С.сут) определяется по формуле (3.5):

qhdes=103.Qhy/Ah.Dd ,

qhdes=2144093,93×103/(1106,25.1627)=21,91 (кДж/(м2.0С.сут)).

31. Расчетный коэффициент энергетической эффективности системы отопления и централизованного теплоснабжения здания от источника теплоты принимаем 0des=0.5, так как здание подключено к существующей системе централизованного теплоснабжения.

32. Требуемый удельный расход тепловой энергии системой теплоснабжения на отопление здания принимается по таблице 3.7 – для здания более 10 этажей равен 70 кДж/(м2.0С.сут). Следовательно, полученный нами результат значительно (более 5%) меньше требуемого 21,91<31, поэтому мы имеем возможность уменьшать приведенные сопротивления теплопередачи ограждающих конструкций, определенные по таблице 1«б» СНиП II-3-79*, исходя из условий энергосбережения. (Изменения вносим в пункт 19).

19. Для второго этапа расчета примем следующие сопротивления теплопередачи ограждающих конструкций:

  • стен Rwreq=1,91 м2.0С/Вт

  • окон и балконных дверей Rfreq=0.367 м2.0С/Вт – (Без изменения)

  • глухой части балконных дверей RF1req=0.81 м2.0С/Вт – (Без измен.)

  • наружных входных дверей Redreq=0.688 м2.0С/Вт – т.е. 0.6 от R0тр по санитарно-гигиеническим условиям;

  • совмещенное покрытие Rcreq=1,63м2.0С/Вт

  • перекрытия первого этажа Rf=2 м2.0С/Вт

20. Приведенный трансмиссионный коэффициент теплопередачи здания:

Kmtr=1.13(912,05/1,91+178/0,81+18,75/0,688+

+0,6×368,75/1,63+0,6×368,75/2)/1846,3 = 0,753 (Вт/(м2.0С)).

21. (Без изменения). Воздухопроницаемость стен, покрытия, перекрытия первого этажа Gmw=Gmc=Gmf=0.5кг/(м2.ч), окон в деревянных переплетах и балконных дверей GmF=6 кг/(м2.ч). (Таблица 12 СНиП II-3-79*).

22. (Без изменения). Требуемая краткость воздухообмена жилого дома na, 1/ч, согласно СНиП 2.08.01, устанавливается из расчета 3м3/ч удаляемого воздуха на 1м2 жилых помещений, определяется по формуле:

na=0,35 (1/ч).

23. (Без изменения). Приведенный инфильтрационный (условный) коэффициент теплопередачи здания:

Kminf=0,151 (Вт/(м2.0С)).

24. Общий коэффициент теплопередачи, Вт/(м2.0С), определяемый по формуле:

Km=Kmtr+Kminf=0,753+0,151=0,904 (Вт/(м2.0С)).


Теплоэнергетические показатели

25. Общие теплопотери через ограждающую оболочку здания за отопительный период Qh, МДж:

Qh=0.0864. 0,904.1627.1846,3=234623,76 (МДж).

26. (Без изменения). Удельные бытовые тепловыделения qint=10Вт/м2.

27. (Без изменения). Бытовые теплопоступления в здание за отопительный период, МДж:

Qint=8084,41 (МДж).

28. (Без изменения). Теплопоступления в здание от солнечной радиации за отопительный период:

Qs=101422,62 (МДж).

29. Потребность в тепловой энергии на отопление здания за отопительный период, МДж:

Qhy=[Qh– (Qint+Qs).У].h ,

Qhy=[234623,76 –(8084,41+101422,62).0.8].1.11= 163190,13 (МДж).

30. Удельный расход тепловой энергии на отопление здания qhdes, кДж/(м2.0С.сут):

qhdes=103.Qhy/Ah.Dd ,

qhdes=163190,13×103/(1106,25×1627)=28,63 (кДж/(м2.0С.сут)).

При требуемом qhreq=31 кДж/(м2.0С.сут).

По принятым сопротивлениям теплопередаче определимся конструкциями ограждений и толщиной утеплителя стен, совмещенного покрытия и перекрытия 1-го этажа (см. сравнение вариантов).

4.5 Сантехническая часть

4.5.1 Отопление и вентиляция

Пляжный корпус. В соответствии с заданием на проектирование предусматривается сезонная летняя эксплуатация здания. Вентиляция здания – приточно-вытяжная с механическим побуждением и вытяжная с естественным побуждением для кладовых. Для вентиляции помещений пищеблока приняты: вентилятор канальный радиальный типа КТ 50-25, вентилятор крышный типа TFE-355. Для вентиляции санузлов и подсобных помещений приняты вентиляторы канальные SVС6 стандартной модели и вентиляторы MAYFAIR-2000 модели 130 и 150 фирмы SILAVENT. Приток в помещения без окон решен установкой саморегулируемых входных вентиляционных отверстий УК-100. Для создания комфортных условий в помещениях медпункта, банкетного здания и зала кафе устанавливаются кондиционеры оконные типа «тепло-холод» фирмы FUJITSU. Удаление воздуха из помещений производится через воздуховоды, которые выводятся выше кровли с зонтами Воздуховоды вентсистем BI-В5 и BEI в пределах чердака и снаружи здания изолировать минеральной ватой толщиной 50мм, покрыть оцинкованной сталью и накрыть общими зонтами для каждой группы воздуховодов. Воздуховоды изготовить из тонколистовой оцинкованной стали. Транзитные воздуховоды, проходящие через помещения, прокладываются в ограждениях с пределом огнестойкости 0,5 часа.

Лифтоподъемник. Круглосуточное поддержание параметров воздушной среды в помещении машинного отделения лифтов в пределах предусматривается путем установки двух моноблочных кондиционеров КСР50 М, работающих в режиме «тепло-холод». Холодопроизводительность каждого кондиционера 5,0 кВт, теплопроизводительность 5,0 кВт.

Вентиляция машинного отделения лифтов – приточно-вытяжная с естественным побуждением. Приток из лифтовой шахты через технологические отверстия. Вытяжка из верхней зоны через решетку с регулятором расхода.

Вентиляция лифтовой шахты с поэтажными холлами – приточно-вытяжная с естественным побуждением через жалюзийные решетки с регулятором расхода.


4.5.2 Водопровод

В корпусе проходит магистральный транзитный водовод Д = 50мм. Ввод производится в фойе на 1-ом этаже. Магистраль прокладывается частично в конструкции пола и, в основном, под потолком 1-го этажа. Подключение потребителей производится от данной магистрали с установкой отключающих вентилей. Водопроводные стояки и подводки к приборам как правило открытые и частично, в конструкции пола этажей. Для влажной уборки помещений санузлов и моечной, предусмотрены три поливочных крана Д = 20мм с шлангами длиной 10м каждый. Стальные трубы, прокладываемые в конструкции пола, изолировать от конденсации изделиями из минеральной ваты. Системы централизованного горячего водоснабжения в корпусе нет. Нагрев воды для технологических (6 моек и 2 раковины) и хоз-бытовых (душ) нужд производится в локальных электроводоподогревателях. Система монтируется из стальных водо-газопроводных оцинкованных труб Д = 15 – 50мм по ГОСТ 3262-75.


4.5.3 Канализация

В корпусе предусмотрена единая система производственной (от моечной) и хоз-бытовой самотечной канализации. Стоки от приборов по отводным линиям опускам и стоякам сбрасываются на 1-ый этаж, где группируются и по одному выпуску Д = 110мм сбрасываются в сеть наружной канализации. Канализационные стояки выводятся выше кровли на 0,5м, чтобы обеспечить вентиляцию системы. Системы канализации монтируются из полипропиленовых труб и фасонных частей Д = 50 – 110мм по данным НПО «Стройполимер»

Основные показатели

  1. Суточный расход воды – 3,20 м3/сут;

  2. Часовой расход воды – 0,96 м3/час;

  3. Расчетный расход – 1,94 л/сек;

  4. Необходимый напор на вводе – 14,0;

  5. Расчетный расход сточных вод – 3,54 л/сек.

4.6 Электроснабжение


Пляжный корпус. Основными потребителями энергии проектируемого корпуса являются осветительные приборы сети электроосвещения, технологическое оборудование кафе и электроприводы системы вентиляции здания.

Установленная мощность электроприемников здания 43,95кВт, в том числе:

- электроосвещение – 13,64 кВт;

  • силовое оборудование – 30,31 кВт;

Расчетная мощность на вводно-распределительном устройстве здания (380/220В) – 27,8 кВт, при средневзвешенном равном 0,95. Категория нагрузок по ПУЭ – III.

Для электроснабжения оборудования пищеприготовления кафе предусмотрен самостоятельный распределительный пункт. Для электроосвещения пляжного корпуса предусматривается система общего электрического освещения с обеспечением горизонтальной освещенности рабочих поверхностей по нормам СНиП. На путях эвакуации (залах, кафе, коридорах) проектом предусматривается система аварийного освещения с обеспечением минимальной освещенности на уровне пола не менее 5 лк. Система общего освещения решена установкой потолочных и вставляемых светильников с люминесцентными лампами и лампами накаливания, тип которых определяется требованиями архитектурного оформления интерьеров. Для эвакуационного освещения предусматривается использование части светильников, предназначенных для общего освещения и световых указателей выходов с автономным электропитанием их на 1 час бестоковых пауз сети электропитания. Питающие линии сети рабочего и эвакуационного освещения предусматриваются самостоятельными, начиная от вводно-распеределительного щита пляжного корпуса. Сеть электроэнергии предусматривается выполнить кабелями с медными жилами в ПЭ и ПХВ трубах скрыто в теле строительных конструкций и по конструкциям за подвесным потолком. Минимальное сечение рабочих жил сети электроосвещения принято:

а) для магистралей – 4 кв.мм;

б) для распределительной сети – 1,5 кв.мм.

Все помещения корпуса за исключением кладовых оборудуются штепсельными розетками. Сеть подключения штепсельных розеток предусматривается выполнить кабелями с медными жилами сечением не менее 2,5 кв.мм. Все розетки с дополнительным заземляющим контактом.

Управление приточной и вытяжной вентиляцией на кухне кафе принято дистанционное, для чего на стене коридора кафе установить пускатели с встроенными кнопками управления.

По степени защиты от поражения молнией пляжный корпус относится ко II категории согласно деления РД34.21 112-37.Расчетная продолжительность гроз для района строительства – 100 час/год, удельная плотность ударов в землю 8,5 кв.км.год.

В качестве молниеприемника используется сетка из ст. проволоки диаметром 6мм, проложенная по стропилам кровли с шагом 6х6м. Спуски к заземлителям предусматриваются ст. оцинкованной проволокой диаметром 6мм. Заземлителями системы защиты от прямого удара молний служит самостоятельный контур из ст. полосы 40х4мм и электродов из угловой ст. 50х50х5мм длиной 3м. Соединение спусков с контуром заземления производится на сварке электродами Э42 с высотой шва не менее 4мм и длиной не менее 100мм.

Защита от заноса высокого потенциала по подземным металлическим трубопроводам инженерных сетей осуществляется присоединением их на вводе в здание к контуру заземления.

Электробезопасность людей при эксплуатации здания обеспечивается:

а) повторным заземлением нулевого провода питающей сети на контур заземления;

б) зануление корпусов осветительной арматуры и оборудования на дополнительный нулевой провод питающей сети;

в) установкой устройств защитного отключения (УЗО) на вводе в кафе и на щитке освещения 1-го этажа.

Лифтоподъемник. Основными потребителями электрической энергии лифтоподъемника являются эл. двигатели лифтов, кондиционеры и светильники сети электроосвещения. В качестве вводно-распределительных устройств приняты распределительные шкафы ПР 8503 навесного исполнения и проходной шкаф у ротонды. Учет электрической энергии устроенна вводе РУ-0,4 кв Р ТП-164. Управление эл. двигателями лифтов осуществляется от комплексных станций управления СУ1 и СУ2 по комплектным кабелям.

Для электроосвещения лифтоподъемника, переходов и ротонды приняты архитектурные светильники с лампами накаливания ведущих европейских фирм. Типы светильников выбраны в соответствии с характеристикой среды в помещениях. Распределительная сеть рабочего и аварийного освещения в пределах переходов выполняется кабелями ВВГ-3х2,5 в пустотах алюминиевых поручней переходов. Управление освещением остановочных площадок и переходов осуществляется от импульсных реле Т 16А по импульсу от кнопок управления. Управление освещением ротонды автоматическое от сумереного выключателя 1С200 с фотодатчиком.

Наружное электроосвещение подходов к лифтоподъемнику со строны ОК решается комплексным проектом благоутройства территории комплекса. Наружное освещение подходов к лифтоподъемнику со стороны пляжа предусматривается установкой 6 дополнительных торшеров с венчающими светильниками «ТОВ А» с ртутной лампой 125 Вт. Запитка светильников наружного освещения принимается от линии сети наружного освещения пляжа кабелем марки ВВГ 4х6 от опоры №6.

4.7 Связь

Пляжный корпус. Проектом предусматривается телефонизация и радиофикация пляжного корпуса от внутриплощадочных слаботочных сетей оздоровительного комплекса.

Расчетное количество абонентов городской телефонной сети -2, расчетное количество абонентов радиосети –7. Телефонный и радио ввод в здание – подземный в а/цементных трубах.

Проектом предусматривается возможность трансляции передач городского проводного вещания или собственных музыкальных программ и сообщений через усилитель (усилитель установлен в баре) на громкоговорители банкетного зала и кафе. Абонентские громкоговорители при помощи тумблера, расположенного на панели разъемов, могут быть подключены непосредственно к линии городского проводного вещания. На эту же панель устанавливаются клеммы (зажимы) для подключения выходного сигнала с усилителя, городской сети и клемма заземления, соединенная с контуром заземления.

Лифтоподъемник. Проектом предусматривается установка двух телефонных аппаратов ГТС (в помещении лифтера и в машинном отделении лифтов) с подключением их к телефонной сети пляжных сооружений.

Для контроля за работой лифтов проектом предусматривается монтаж в помещении лифтера пульта диспетчерского управления лифтами (ПДЛ-20А) и соединение его с элементами диспетчеризации согласно заводской схеме ПДЛ-20А.00-00.00 ПС.

Наружные сети связи предусматриваются кабелем ТПП-10х2х0,5 в существующей и проектируемой 2-х отверстной канализации из а/ц труб диаметром 100мм от КРТП-10х2 пляжного корпуса до помещения лифтера лифтоподъемника. Для организации комплексной сети связи и диспетчеризации инженерного оборудования ОК на перспективу проеетом предусматривается прокладка трубной канализации связи от лифтоподъемника до беседки-перголы по конструкциям пешеходного перехода на отм. +38.000.


4.8 Пожарная сигнализация

Пляжный корпус. Проектируемый объект оборудуется системой автоматической пожарной сигнализации на базе 2-х приемно-контрольных приборов ППКОПО1049-2-1 «Сигнал-2ПМ». Один из которых устанавливается в помещении медпункта на отм. 0.000, второй – в комнате отдыха персонала на отм. +4.000.

Сигнал пожарной тревоги вынесен на местные световой и звуковой приборы, размещаемые на фасаде здания с обеспечением возможности дублирования на ПЦН по каналам сети телефонизации. Предусмотрено автоматическое отключение всех механических приточно-вытяжных систем вентиляции. Монтаж датчиков пожарной сигнализации производятся в соответствии с фактически установленными осветительными приборами, на расстоянии не менее 200мм от светильников.

Лифтоподъемник. В качестве датчиков системы пожарной сигнализации использованы дымовые пожарные извещатели типа ИП 212-5М. Монтаж датчиков пожарной сигнализации производится в соответствии с фактически установленными осветительными приборами на расстоянии не менее 200мм от светильников. Станция пожарной сигнализации устанавливается в помещении дежурного. Общий сигнал тревоги передается на станцию пожарной сигнализации пляжного корпуса и далее по существующим каналам связи в помещение КПП оздоровительного комплекса.

Местный светозвуковой сигнал оповещения о пожаре (выносное устройство УС-1М) устанавливается на наружной стене лифтоподъемника на высоте 2,5-3м от планировочной отметки грунта. Питание приемно-пускового прибора автоматической пожарной сигнализации принято от осветительного щитка ЩО-1, размещаемого в помещении дежурного (на отм. +0.00).


5 Расчетно-конструкторская часть


5.1 Инженерно-геологические условия

1 слой – Насыпные грунты, состоящие из разновеликих глыб, щебня и дресвы мергеля, аргиллита, песчаника, алевролита; местами встречаются галька и валуны, редко – строительный мусор. Заполнитель в насыпных грунтах – бурая глина полутвердая и тугопластичная, местами песок и суглинок (до 20%). Мощность слоя от 1 до 4-5м.

2 слой – Делювиальные суглинки бурые и желтовато-бурые, плотные, твердые и полутвердые, со щебнем и дресвой аргиллитов, мергелей и песчаников (до 30-40%) с единичными включениями разновеликих глыб песчаника. В основании абразионного уступа фрагментарно прослеживаются небольшие конусы осыпного материала – как разновидность делювия; по механическому составу это дресвяно-щебневый материал с суглинистым заполнителем до 20-30%.

3 слой – Элювиальные образования кровли коренных пород – дресва, щебень, глыбовый развал верхней зоны коры выветривания. Практически это выветрелые и сильно трещиноватые мергели, аргиллиты, алевролиты и песчаники сохранившие слоистость. Трещины обычно ожелезненные с глинисто-суглинистым заполнителем (10-30%). Мощность элювия до 2-3м.

4 слой – Флишевое переслаивание мергелей, аргиллитов, песчаников, алевролитов верхнемелового возраста. Породы в кровле слоя 4 трещиноватые, слабовыветрелые. Мощность более 100м.

Грунтовые воды при изысканиях не были выявлены. Сезонная верховодка может формироваться в слоях 1,2,4. Верховодка неагрессивна по отношению к бетонам на всех марках цемента.

Физико-математические свойства грунтов.

Грунты 1 слоя (техногенные насыпные грунты с разной давностью отсыпки и разносортным составом материала, с примесью строительного мусора и других хозяйственных отходов0 не могут служить основанием зданий и сооружений, поэтому их физико-механические характеристики не приводятся. Условно эти грунты могут быть приравнены к элювию (см. слой 4).

Слой 2. Делювиальные суглинки с дресвой и щебнем до 30-40% развиты в зоне аэрации и характеризуются переменным (по сезонам) режимом влажности.

Естественная влажность в среднем - 0,27;

Удельные вес в среднем – 1,79 т/м3;

Коэффициент фильтрации в среднем – 0,04 м/сутки;

Коэффициент пористости – 1,00;

Удельное сцепление

;

Угол внутреннего трения , ;

Модуль деформации Е = 12 МПа.

Категория грунтов по ручной разработке – III.

Слой 3. Элювиальные дресвяно-щебнистые грунты с глинисто-суглинистым заполнителем (10-35%). Характеристики даются по заполнителю.

Естественная влажность в среднем - 0,38;

Удельные вес в среднем – 1,76 т/м3;

Коэффициент фильтрации в среднем – 0,5 м/сутки;

Коэффициент пористости – 1,15;

Удельное сцепление

;

Угол внутреннего трения , ;

Модуль деформации Е = 18 МПа;

Сопротивление грунта R = 0,2МПа (2,0 )

Категория грунтов по ручной разработке – IV.

Слой 5. Трещиноватые мергели, аргиллиты, алевролиты верхнего мела.

Естественная влажность - 0,12;

Удельные вес – 2,25 т/м3;

Коэффициент фильтрации в среднем – 0,5 м/сутки;

Коэффициент пористости – 0,45;

Модуль деформации Е = 50 МПа;

Сопротивление грунта R = 0,5 МПа (5 )

Категория грунтов по ручной разработке – IV – 50%, V – 50%.

Исходя из приведенных характеристик грунтов, несущим является 4 слой. Для которого оптимальны сваи – стойки.


5.2 Проектирование свайного фундамента

Сваи должны заходить в 4 слой не менее чем на 5 метров. Голова свай должна заходить в ростверк на 100 мм. Принимаем сваю длиной 6м и диаметром 630мм.

Несущая способность сваи-стойки определяется по формуле

где - коэффициент условий работы свай в грунте;

А – площадь опирания сваи на грунт,

R – расчетное сопротивление грунта под нижним концом сваи-стойки.

Расчетная несущая способность свай с учетом коэффициента надежности

;

где - коэффициент надежности.

Определяем количество свай в свайном фундаменте.

Количество свай определяем по формуле:

;

принимаем 36 свай

где - сумма всех действующих расчетных нагрузок на фундамент с учетом коэффициентов надежности по нагрузке ;

- вес ростверка;

- коэффициент, учитывающий перегрузку отдельных свай от момента и горизонтальной силы, принимаемый 1,6.

Проверка свайного фундамента по первой группе предельных состояний

Выполняем проверку свайного фундамента по несущей способности по условию:

Проверке подлежит наиболее нагруженная крайняя свая. Расчетная нагрузка на сваю определяется по формуле:

где - соответственно расчетные вертикальные нагрузки и момент всех сил относительно центра тяжести подошвы ростверка, ;

- вес ростверка, ;

- количество свай в ростверке;

- расстояние в направлении действия момента до оси наиболее удаленной сваи от центра тяжести свайного поля, м;

- то же, до оси каждой сваи, м;

1 сочетание: (Собственный вес + пешеходы)

т.к. принимаем 49 свай.

требуемое условие удовлетворяется.

2 сочетание: (Собственный вес + пешеходы + ветер вдоль оси y)

требуемое условие удовлетворяется.

3 сочетание: (Собственный вес + пешеходы + ветер вдоль оси x)

требуемое условие удовлетворяется.

5.3 Проверка на устойчивость при сейсмическом воздействии

Рисунок 5.3 – Схема башни лифтоподъемника

Сосредоточенные сейсмические силы определют по формуле

, /41/

где - сейсмический коэффициент зависит от расчетной сейсмичности сооружения, для 9 баллов.

- вес лифтоподъемника с коэффициентом 0,9;

- сосредоточенная сейсми-ческая сила, опрокидывающая;

- условие удовлетворяется.

В результате расчетов имеем.

Монолитный железобетонный ростверк по буронабивным сваям. Сваи должны быть забурены в коренные породы не менее чем на 5м. Размеры ростверка - 11400 х 11400мм; высота ростверка - 2400мм; голова свай должна заходить в ростверк на 100мм; количество свай - 49; диаметр свай - 630мм;

5.4 Расчет балки переходной галереи

Выполним сбор нагрузок на 1 п.м. балки переходной галереи на отм. 38.000.

Таблица 5.4 - Нормативные и расчетные нагрузки на 1п.м.

Вид нагрузки
Нормативная нагрузка, кН
Коэф. надеж-ности по нагрузке
Расчетная нагрузка, кН

Постоянная:

железобетонная балка

12,69

1,1

13,96

алюминиевые витражи

2,06

1,05

2,16

алюминиевые поручни

1,35

1,05

1,42

стеклопакеты

1,55

1,2

1,86

полированный гранит, толщ.20мм

0,77

1,3

1

цем-песчаный раствор

0,58

1,3

0,75

гидроизоляция из техноэласта

0,24

1,2

0,29

Итого постоянная:

21,44

Временная:

пешеходы

6,4

1,4

8,96

снег

0,375

1,4

0,525

Итого временная:

9,485

ИТОГО:

30,925

Расчет пролетной балки выполнен в программном комплексе «Лира».

Результата расчетов предоставлены далее на страницах 56-78. Армирование и размеры поперечного сечения смотри рисунок 5.5. Основную схему армирования смотри на рисунке 5.6. Характеристики бетона и арматуры смотри на странице 56. Эпюры Мy, Qz и процент армирования сечений стержней смотри приложение А.


6 Технология строительного производства


6.1 Технология производства работ при возведении башни лифтоподъемника

Для возведения применяется блочно – переставная опалубка немецкой фирмы «Пери», которая успешно применяется во всем мире. Технологический процесс устройства опалубки состоит в следующем. Щиты опалубки или собранные из них крупные опалубочные элементы устанавливают краном и закрепляют в проектном положении. После бетонирования и достижения бетоном прочности, допускающей распалубливание (70%), опалубку и поддерживающие устройства снимают, соблюдая определенную последовательность. Очистив и при необходимости, отремонтировав опалубку, ее переставляют на новую позицию.

6.1.1 Арматурные и опалубочные работы

Процесс заготовки арматурных стержней включает следующие операции: правку, чистку, резку, гнутье и сварку арматуры. Очистку арматурной стали от ржавчины выполняют электрощетками или ручными стальными щетками, а правку ее – на специальных станках и вручную, используя для этого стальные плиты с упорами. Резку стержней диаметром до 10мм производят ножницами, а до 40мм – на приводных станках. Длину отрезаемого стержня определяют по разметке участков арматуры с учетом его удлинения в местах изгибов.

Армирование конструкций отдельными стержнями ведут с учетом расположения их в конструкции, однако, всегда начинают с установки рабочих стержней. При армировании колонн вначале устраивают и закрепляют вертикальные рабочие стержни. При таком армировании оставляют открытыми две стороны опалубки. При армировании балок, прогонов, ригелей при высоте конструкции более 60см каркас собирают на днище короба с открытой одной из сторон опалубки.

Армирование сетками и плоскими каркасами осуществляется с помощью кранов, которыми подают пакеты арматуры непосредственно к конструкции, а при массе заготовок более 100кг – укладывают их в проектное положение. Плоские арматурные каркасы устанавливают, а опалубку и соединяют между собой распределительной арматурой.

Армирование пространственными каркасами и армоблоками производятся путем их укладки в полностью или частично установленную опалубку. Вначале выправляют арматурные выпуски основания и наносят разбивочные оси. Затем краном при помощи стропов или траверсы поднимают армоэлементы, устанавливают в проектное положение и закрепляют растяжками. Далее подгоняют и соединяют арматурные выпуски и освобождают стропы крана.

При армировании конструкций должен быть обеспечен защитный слой, для чего используют различные фиксаторы (плитки из бетона, или раствора, арматурные упоры, пластмассовые подставки и т.п.). Главное их назначение – сохранить проектное положение арматуры в опалубке при укладке и уплотнении бетонной смеси.

Опалубочные работы. При возведении сооружения используется опалубка сборно-переставная фирмы «Пери» (Германия). Сборка опалубки или ее монтаж ведется из готовых элементов и узлов креплений, изготовленных в опалубочных мастерских или цехах. Конструкции опалубки, поддерживающих лесов, а также стоек крепежных деталей должны обеспечивать прочность, жесткость и устойчивость при укладке бетона, обеспечивать легкость установки и разборки. Поверхность опалубки, обращенная к бетону, должна быть равной, плотной и не иметь щелей. Инвентарная опалубка должна также выдерживать установленное количество оборачиваемости, т.е. сборки и разборки без повреждения и снижения ее качества.

6.1.2 Приготовление и транспортирование бетонной смеси

Бетонную смесь готовят в автобетоносмесителях. Бетонная смесь должна сохранять при транспортировании, перегрузке и укладке в опалубку однородность и обладать удобоукладываемостью. Однородность обеспечивается связностью (нерасслаиваемостью) и ее водоудерживающей способностью, которые достигаются правильным подбором состава смеси, точностью дозировки составляющих и тщательности их перемешивания. Удобоукладываемость смеси зависит от ее гранулометрического состава т количества воды, которые назначаются в зависимости от характера и размеров бетонируемых конструкций, степени армирования, способов транспортирования и уплотнения смеси.

Процесс транспортирования смеси включает в себя доставку ее от места приготовления на строительный объект, подачу смеси непосредственно к месту укладки и распределения ее по блоку бетонирования. Доставленную на объект смесь подаю в конструкции бетононасосами.

6.1.3 Укладка бетонной смеси

Качество конструкций во многом зависит от правильной укладки и уплотнения смеси. Она должна плотно прилегать к опалубке, арматуре и закладным частям сооружения, а также полностью заполнять (без каких-либо пустот) объем бетонируемой конструкции. Смесь укладывают горизонтальными слоями толщиной 30-50см по всей площади сооружения (блока). При этом слои укладывают в одном направлении, одинаковой толщины и непрерывно на всю высоту.

Каждый слой до начала укладки следующего тщательно уплотняют. Продолжительность укладки слоя ограничивается временем начала схватывания цемента, устанавливаемого лабораторией. Перекрывать предыдущий слой следующим необходимо до начала схватывания цемента в предыдущем слое. Независимо от способа укладки смеси, необходимо обеспечивать неизменность положения опалубки, арматуры и закладных деталей. Если произошло их смещение, то положение нужно исправить до схватывания бетона.

6.1.4 Уплотнение бетонной смеси

Уплотнение бетонной смеси, необходимое для улучшения качества и прочности бетонных конструкций, осуществляют в основном вибрированием и иногда трамбованием. При уплотнении нельзя касаться вибратором арматуры, что может нарушить ее сцепление с бетоном. Чтобы не допустить непровибрированных участков смесь уплотняют полосами вдоль опалубки или вдоль арматуры. Поверхностными вибраторами смесь уплотняют полосами, перекрывая границы уже провибрированного бетона на 10-20см. Передвигают поверхностный вибратор проволочным крючком, отрывая его от бетона. Для уплотнения горизонтальных слоев бетона небольшой толщины наряду с поверхностными вибраторами применяют вибробрусы и виброрейки.

6.1.5 Правила размещения и бетонирования рабочих швов

При бетонировании конструкций неизбежны технологические перерывы (окончание смены, перерывы в доставке бетона, установка арматуры, опалубки и т.д.). В этих случаях устраивают рабочие швы. Их располагают таким образом, чтобы в наименьшей степени снижалась несущая способность конструкции. При бетонировании колонн рабочие швы можно устраивать на уровне фундамента, у низа балок, опирающихся на колонны. При устройстве монолитных перекрытий рабочие швы устраивают в сечениях, где наименьший изгибающий момент и соответственно нагрузки на конструкцию минимальны. Такие сечения расположены на расстоянии 1/3 от промежуточных опор (колонн) в одну и другую стороны. Причем рабочие швы могут располагаться как параллельно балкам, так и прогонам. Рабочие швы устраивают путем установки деревянного щита с прорезями для арматуры.

При перерыве в бетонировании более 2ч возобновлять укладку можно только при наборе бетоном необходимой прочности ( не менее 1,5 МПа ), так как в противном случае дальнейшая укладка может привести к разрушению структуры ранее уложенного бетона. Перед возобновлением бетонирования очищают поверхность бетона от пыли и грязи. Для лучшего сцепления ранее уложенного бетона со свежим рабочие швы необходимо также очистить от цементной пленки металлическими щетками, механическими фрезами, воздушной или водяной струей. Затем боковые поверхности бетона в месте образования рабочего шва покрывают слоем цементного раствора 1,5 – 3 см ( чтобы заполнить все неровности ). После таких подготовительных работ можно бетонировать конструкцию дальше.

6.1.6 Уход за бетоном, снятие опалубки, предупреждение и устранение дефектов

Бетон от прямого воздействия солнечных лучей и ветра защищают рогожей, мокрыми опилками, полимерными пленками. Кроме того, бетон на портландцементе поливают в течение 7 суток и на прочих цементах – в течение 14 суток. При температуре наружного воздуха более 15С первые 3 суток поливают через каждые 3 часа, а в последующие дни – 3 раза в сутки. По свежеуложенному бетону запрещается ходить, устанавливать леса и опалубку до достижения бетоном прочности не менее 1,5 МПа. Распалубка боковой поверхности производится после достижения бетоном прочности, обеспечивающей сохранность поверхностей. Загружение всех конструкций полной расчетной нагрузкой допускается лишь после достижения бетоном проектной прочности.

После распалубливания бетона возможны некоторые дефекты монолитных конструкций (раковины, неровности, наплывы), а иногда обнаруживаются и крупные дефекты ( сквозные отверстия, глубокие раковины и пустоты, трещины, отклонения от проектных размеров). Такие дефекты в ряде случаев требуют частичной разборки или усиления элементов конструкций.

Чтобы предупредить возникновение этих и других дефектов надо не отступать от правильной технологии и постоянно контролировать качество выполняемых операций, начиная от установки арматуры, опалубки и заканчивая укладкой и уплотнением бетона, уходом за ним и распалубкой. Мелкие неровности и наплывы срубают вручную или пневматическим инструментом, а затем затирают цементным раствором. Большие раковины заделывают мелкозернистой бетонной смесью той же марки, что и бетон конструкции. Перед укладкой смеси дефектную зону расчищают на всю глубину, продувают сжатым воздухом и промывают водой. Уложенную смесь обязательно уплотняют вибрированием.

6.2 Технология производства работ при монтаже пролетных балок

До начала монтажа пролетных балок должны быть выполнены работы по:

  • подготовке и планировке площадки, включая планировку мест раскладки пролетных балок перед подъемом;

  • проверке положения в плане и отметки оснований фундаментов и других опорных конструкций;

  • устройству проездов для передвижения кранов;

  • подводке силовой осветительной сети;

  • устройству временных помещений, необходимых для ведения монтажных работ;

  • доставке к месту работы необходимого оборудования, инструмента, вспомогательных материалов и грузоподъемных приспособлений.

Последовательность монтажа железобетонных конструкций должна обеспечить устойчивость и геометрическую неизменяемость смонтированных частей сооружения, и прочность всех соединений. Монтаж железобетонных конструкций – это комплексный процесс, который состоит из простых процессов и операций: строповки, подъема и установки конструкций в проектное положение; их выверки, временного и окончательного закрепления. Железобетонные пролетные балки стропят в обхват при помощи специальных захватов.

До расстроповки балки выверяют и закрепляют. При выверке проверяют положение балок по продольным осям и отметки верхних полок. Для установки балок по продольным осям на опоры колонн наносят риски оси, а на торцы балок и верхние закладные планки – риски середины. Соединение этих рисок обеспечивает правильное положение балок. Отметки переносят наверх опор и по ним проверяют нивелиром положение верхних полок балок. После выверки заваривают закладные элементы балок и опор и снимают стропы.

Опорным закреплением балочных пролетных строений в сейсмических районах предъявляют следующие дополнительные требования: неподвижные опорные части должны обеспечить восприятие и передачу на опоры продольных и поперечных (горизонтальных) сейсмических сил от веса пролетного строения. Подвижные опорные части должны удовлетворять тому же требованию в отношении поперечных сейсмических сил. Одновременно они должны иметь достаточный ход для обеспечения свободы перемещений подвижного конца в процессе сейсмических колебаний галереи.

При перевозке и складировании пролетные балки должны находиться в проектном положении. При этом опоры балок следует располагать в пределах опорных закладных элементов.

Монтаж пролетных балок осуществляется при помощи гусеничных кранов КС-8162 и КС-8165, траверс грузоподъемностью 10 и 25т.

В каждую смену монтаж пролетных балок выполняет звено из семи человек. В состав звена входят:

Монтажники конструкций 5 разряда – 1; 4 разряда –2; 3 разряда – 1; 2 разряда – 1; электросварщик 5 разряда – 2.

До начала работ выполнения монтажных работ необходимо установить порядок обмена сигналами между лицом, руководящим монтажом и машинистом. Все сигналы подаются только одним лицом (бригадиром, звеньевым, такелажником-стропальщиком), кроме сигнала «Стоп», который может быть подан любым работником, заметившим явную опасность.

Очистку монтажных узлов от грязи и наледи необходимо производить до подъема балок. Монтируемые элементы следует поднимать плавно, без рывков, раскачивания и вращения. Поднимать балки следует в два приема: сначала на высоту 20-30см, затем после проверки надежности строповки производить дальнейший подъем.

Запрещается выполнять монтажные работы на высоте в открытых местах при скорости ветра 15м/с и более, грозе или тумане, исключающих видимость в пределах фронта работ.

Таблица 6.2.1 - Ведомость монтажных приспособлений и оборудования

Наименование и краткая харак-теристика приспо-собления

Эскиз

Грузо-

подъем-ность,т

Масса, кг

Расчет-

ная вы-сота, м

Назначение

1 Строп четырех ветвевой

4СК-10.0/4000

ВНИПИ Пром-

стальконструк-ция Шифр

29700-102

10

89,9

4,0

Монтаж плит покрытий и панелей наружных стен

2 Строп четырех ветвевой ЦНИИОМТП

№ 3484.47-52

6,3

72

2,0

Для монтажа лестничных маршей и панелей стен

3 Навесная люлька Промстройконструкция №21059М

0,1

6,0

Для сварочных работ

4 Лестница подвесная монтажная ВНИПИ Промстальконсрукция Шифр 29800-11, 12, 13

0,2

53

3,9

Обеспечение рабочего места на высоте

5 Подкос со скобой

-

-

-

Для временного

крепления

внутренних панелей

6 Подкос со

скобой

-

-

-

Для крепления

наружных и

внутренних

стен

7 Предохрани-тельный пояс ГОСТ 14185-77

Для обеспечения безопасности монтажника

Таблица 6.2.2 – Ведомость потребности в основных строительных машинах и транспортных средствах

Наименование
Марка
Характеристика
Кол - во

1 Бульдозер на тракторе ДТ-75

ДЗ-42Г

Мощность 75лс

1

2 Экскаватор на пневмоходу

ЭО-2621А

Емкость ковша 0,25м3

1

3 Экскаватор на пневмоходу

ЭО-3322

Емкость ковша 0,5м3

1

4 Насос для откачки воды

ГНОМ 25-50

Производительность 25 м3/час

1

5 Установка для устройства буронабивных свай на базе автомашины ЗИЛ-130Г

ЛБУ-50

Диаметр бурения 600мм

1

6 Автокран на базе ЗИЛ-130

КС-2561Е

Грузоподъемность 6,3т

1

7 Кран на базе МАЗ-5334

КС-3571А

Грузоподъемность 10т

1

8 Кран на базе МАЗ-5334

КС-3577А

Грузоподъемность 12,5т

1

9 Кран пневмоколесный

КС-4361А

Грузоподъемность до 3т, стрела 25,5м с гуськом 10,5м

1

10 Башенный кран

КБ-503,2

Грузоподъемность до 10т, стрела 45м

1

11 Автокран «Днепр»

КС-5473А

- и - до 25т

1

12 Автокран «Днепр»

КС-5473А

Грузоподъемность до 1,1т, стрела 24м с удлинением 8м и неуправляемым гуськом 7м

1

13 Гусеничный кран

КС-8162

С башенно-стреловым оборудованием 35м + гусек 19м, грузоподъемность 15-25т

1

14 Гусеничный кран

КС-8165

Грузоподъемность до 45т

1

15 Компрессор

ПКС-5

- и - 5 м3/мин

2

16 Сварочный трансфор-матор

ГД-300

Мощность до 20кВ

1

17 Сварочный агрегат

АСБ-300-7

Сварочн. ток 300А на раме без колес

1

18 Автосамосвал

МАЗ-503

Грузоподъмность 8т

1

Наименование
Марка
Характеристика
Кол - во

19 Автобетоносмеситель на базе КамАЗ-5511

С-1036Б

Объем барабана 6,1м3

2

20 Автобетононасос

СБ-126Б

Производительность 65 м3/час

1

21 Трубовоз

1

22 Поливочная машина

ПМ-130

1

23 Строительный подъемник грузовой

ТП-16-3

Н=27м, грузоподъемность 500кг

1

24 Вибратор глубинный с гибким валом

ИВ-99

Масса 12кг

2

25 Вибратор площадочный

ИВ-92А

Масса 28кг

2


6.3 Выбор средств механизации по техническим параметрам

Монтаж конструкций сооружения ведут монтажным комплектом, в составе которого входят: ведущая машина (монтажный кран или другие монтажные механизмы), вспомогательные машины (вспомогательные краны, погрузо-разгрузочные и транспортные машины) и технологическое оборудование (грузозахватные устройства, кондукторы, устройства для временного закрепления, выверки и др.).

Выбор ведущего монтажного крана базируется на необходимости соответствия монтажно-конструктивной характеристики монтируемого объекта (размеров здания, массы и расположения элементов, рельефа строительной площадки и других особенностей определяющих выбор технических средств монтажа) параметрам монтажного крана.

К параметрам монтажных кранов относятся:

Грузоподъемность – наибольшая масса груза, которая может быть поднята краном при условии сохранения его устойчивости и прочности конструкции;

Qк = Qэ + Qос + Qгр,


где Qэ – масса монтируемого элемента, т

Qос – масса монтажной оснастки,т

Qгр – масса грузозахватных устройств,т

Колея – расстояние между осью вращения поворотной платформы крана и вертикальной осью, проходящей через центр обоймы грузового крюка. При определении полезного вылета крюка расстояние отсчитывают от наиболее выступающей части крана.

Длина стрелы – расстояние между центром оси пяты стрелы и оси обоймы грузового полиспаста.

L = a|2 + b + c,

где а – ширина подкранового пути;

b – расстояние от оси рельса подкранового пути до ближайшей части здания;

c – расстояние от центра тяжести монтируемого элемента до наиболее выступающей части здания;

База – расстояние между осями передних и задних колес пневмоколесных или рельсовых кранов. Для технической характеристики гусеничных кранов указывают длину гусеничного хода.

Радиус поворота хвостовой части поворотной платформы – расстояние между осью вращения крана и наиболее удаленной от нее точки платформы или противовеса.

Высота подъема грузового крюка – расстояние от уровня стоянки крана до центра грузового крюка в его верхнем положении.

Нк = hо + hз + hэ + hст,

где hо – превышение места установки (монтажного горизонта) над уровнем стоянки башенного крана;

hз – запас по высоте, требующийся по условиям безопасности монтажа;

hэ – высота или толщина элемента;

hст – высота строповки

Скорость подъема или опускания груза, передвижения крана, вращения поворотной платформы. При этом следует учитывать, что для плавной и точной «посадки» сборного элемента скорость опускания груза не должна превышать 5 м/мин, а скорость вращения крана – 1,5 мин.

Установленная мощность – суммарная мощность силовой установки крана.

Производительность – количество груза, перемещаемого и монтируемого в единицу времени. Производительность монтажного крана может также измеряться числом циклов, совершаемых в единицу времени.

Обычно краны выбирают в два этапа, вначале по техническим параметрам, а затем – по экономическим.

В дипломном проекте выбраны краны по техническим параметрам и экономическим параметрам. Из-за большого объема застройки, в проекте используются около 8 видов кранов и поэтому, автор дает характеристики только основных видов. Они используются при возведении участков застройки, на которые разрабатывались технологические карты.

Характеристики гусеничного крана КС-8165:

  • грузоподъемность для основного и вспомогательного подъема –75/15т;

  • вылет крюка – 7-20м;

  • длина стрелы – 25м;

  • высота подъема крюка – 23,3-16,1м;

  • грузоподъемность при передвижении – 70т;

  • скорость подъема – опускания груза – 3,1-0,14 м/мин;

  • частота вращения поворотной части в минуту – 0,2-0,44;

  • скорость передвижения – 0,5 км/час;

  • размеры ходового устройства:

длина – 7500мм;

ширина – 6100мм;

ширина трака – 900мм;

  • среднее давление на грунт – 0,11Мпа;

  • масса крана – 136,8т.

Характеристики башенного крана КБ-504:
  • грузовой момент – 250 т.м;

  • грузоподъемность, на максимальном вылете – 6,2т;

  • максимальная – 10т;

  • вылет максимальный – 40м;

  • при максимальной грузоподъемности 25т;

  • высота подъема, при максимальном вылете – 60м;

  • максимальная – 77м;

  • глубина опускания – 5м;

  • скорость подъема груза максимальной массы – 60 м/мин;

  • подъема груза наибольшая – 160 м/мин;

  • скорость передвижения крана – 19,2 м/мин;

  • колея – 7,5м;

  • масса общая – 163т;

  • тип стрелы – БС.

Характеристики пневмоколесного крана КС-5363:

  • грузоподъемность, на выносных опорах – 25-3,5т;

  • без выносных опор – 14,0-2,02т;

  • вылет крюка (наименьший – наибольший) – 4,5-13,8м;

  • длина стрелы – 15м;

  • скорость подъема (опускания) груза (наибольшая – наименьшая) – 6,0-0,3м/мин;

  • частота вращения в минуту – 0,1-1,2;

  • скорость передвижения, рабочая – 1,7км/час;

  • грузоподъемность при передвижении – 14т;

  • габаритные размеры крана в транспортном положении:

длина – 14100мм;

ширина – 3370мм;

высота – 3900мм;

  • масса крана – 33т.

6.4 Разработка технологической карты и графика производства работ

Технологические карты разрабатывались на возведение башни лифтоподъемника до отметки 23.000 и монтажа пролетных балок (длиной 27м).

На листе 8 графической части разработаны:

  • Схема возведения лифтоподъемника от отм. 0.000 до отм. 23.000;

  • Схема опалубки перекрытия на отм. 13.0004

  • План. Опалубка перекрытия;

  • Схема опалубки колонны;

  • Монолитный железобетонный каркас;

  • Указания к производству работ;

Таблица 6.4 - Калькуляция затрат труда на устройство монолитного перекрытия

Наименование технологических процессов

Ед. изм

Объем работ

Обоснова-

ние (ЕниР)

Норма времени рабочих, чел-ч

Затраты труда рабочих, чел-ч

1 Устройство опалубки перекрытия

М2

42,68

217,47

8

$ Е4-1-34

табл.5 №3а

$ Е4-1-44

табл. 2

$ Е4-1-49

табл. 1 №4

0,22

0,36

0,26

9,39

78,29

2,08

2 Устройство арматурных каркасов и сеток

Кг

Укладка бетонной смеси в перекрытие

М3

Из опыта строительства железобетонных башен следует, что возведение перекрытий занимает 20 –30% всего календарного времени, затрачиваемого на возведение надземной части башни. Такое положение является результатом главным образом последовательного способа производства работ при возведении стен и перекрытий. С целью сокращения общей продолжительности строительства при разработке проекта производства работ следует руководствоваться максимальным совмещением работ при возведении различных конструктивных элементов. Методы устройства перекрытий предопределяются главным образом выбранным способом устройства опалубки.

При возведении башни лифтоподъемника используется сборная переставная опалубка немецкой фирмы «Пери». Возведение перекрытий данным методом осуществляется снизу вверх и выполняется захватками от перекрытия – до перекрытия. Опалубка перекрытия представляет собой конструкцию, в которой днище опалубки, прогонов и балок опираются на стойки, установленные через 1,5 - 1,6м.

Опалубка «Пери Варио» рассчитана на допустимое давление свежего бетона до 100кН/м2. Чтобы избежать утечки воды и расслоение бетона на углах рекомендуется создать предварительное напряжение не только затягиванием тяжей гайками, но и забивкой клиньев KZ в захваты SKZ (смотри лист 8).

Армирование стен башни призводится плоскими сварными вертикальными каркасами и отдельными горизонтальными стержнями, а армирование колонн выполняется отдельными стержнями. При возведении армирование и укладка бетонной смеси повремени почти совпадает. Поэтому контролировать монтаж арматуры очень сложно. Для обеспечения проектного положения горизонтальной арматуры укладываемой в стены отдельными стержнями, применяются сварные вертикальные каркасы из двух вертикальных стержней и горизонтальных поперечин, так называемые контрольные лесенки, устанавливаемые на расстоянии 3,5-4м друг от друга. Расстояние между вертикальными стержнями лесенки должно соответствовать проектному расстоянию между стержнями горизонтальной арматуры в одном ряду, а расстояние между поперечинами лесенок – шагу горизонтальной арматуры по высоте.

Горизонтальная арматура укладывается на поперечины лесенок и огибается их консолями. Этим достигается устойчивость и правильность установки арматуры. В целях дополнительного контроля за установкой горизонтальной арматуры верхний ряд не закрывается бетонной смесью, т.е. каждый следующий ряд арматуры укладывается прежде, чем нижележащая арматура будет забетонирована.

На листе 9 графической части разработаны:

  • Схема возведения пролетных балок;

  • Схема защиты существующей дороги привыполнении отделочных работ;

  • Схема монтажа пролетных балок;

  • Схемы захватного приспособления, крюка, карабина;

  • Указания к производству работ;

  • Циклограмма монтажа.

При монтаже пролетных балок используется две траверсы ПИ Промстальконструкция №15946р-11, 12:

грузоподъемностью 10 т;

вес 455 кг;

длина 6000 мм;

и одна траверса ПИ Промстальконструкция №15946Р-11, 12: грузоподъемностью 25 т;

вес 1750 кг;

длина 12000 мм.

Итого масса монтажной оснастки – 2660 кг. Схему траверсы смотри лист 9 графической части.

Для захвата пролетной балки используем автоматические захваты. Захваты в раскрытом состоянии поднимают краном и наводят на конструкцию и фиксируют балку. Применение автоматических захватов позволяет: значительно повысить безопасность ведения работ; исключить опасные работы верхолазов; автоматизировать процессы строповки и расстроповки и сократить их трудоемкость и продолжительность в 8-10 раз.

7 Организация, планирование и управление в строительстве

7.1 Подсчет объемов работ

Таблица 7.1 - Ведомость объемов работ

Наименование работ

Ед. изм.

Кол-во

Примечания

1

Выемка грунта
м3
1769

2

Выемка грунта в резерве

м3

280

3

Разработка скального грунта отбойным молотком

м3

592

4

Насыпь

м3

534

5

Уплотнение грунта пневмотрамбовками с поливом водой

м3

793

6

Крепление стен котлованов и траншей

м2

144

7

Бурение скважин БНС

м

604

8

Крепление скважин трубами стальными с извлечением

м

141

9

Монолитные бетонные конструкции

м3

313,23

10

Монолитные ж/бет. конструкции

м3

1701,64

11

Установка арматуры в монолитных конструкциях

т

91,8

12

Монтаж сборных конструкций:

- бетонных

м3

99,43

- железобетонных

м3

126,22

- стальных

т

13,3

13

Кирпичная кладка стен и перегородок

м2

123,87

14

Конопатка примыканий перегородок

м

160,43

15

Проклейка примыканий перегородок тканью

м2

27,2

16

Установка щитов опалубки из гладкой фанеры толщ.18мм

м2

3715

17

Опалубка - трубы стальные

м

33,2

18

Устройство полов:

- рулонное покрытие

м2

571,1

- гранитные плиты толщ. 21мм

м2

604

- плиточные

м2

133,68

- линолеум

м2

25

- ковровое покрытие несгораемое

м2

268

Наименование работ

Ед. изм.

Кол-во

Примечания

- мозаичные полы и ступени

м2

47,1

- бетонные с железнением

м2

21

19

Асфальтобетонное покрытие

м2

22

20

Цементные стяжки

м2

666

21

Гидроизоляция:

- обмазочная

м2

277

- рулонными материалами

м2

187,6

22

Теплоизоляция плитами "Роквул" толщиной:

- 40мм

м2

18

- 45мм

м2

160

23

Устройство кровли металлочерепицей "раннила стил"

м2

647

24

Монтаж купола из алюминиевых конструкций

м2

94

25

Заполнение проемов:

- оконных и витражей

м2

817,16

- дверных

м2

39,42

26

Остекление:

- стеклопакетами с рефленым стеклом и прозрачным полированным стеклом "Триплекс"

м2

667

- стеклопакетами без внутреннего стекла "Диплекс"

м2

31

27

Установка резиновых прокладок (сеч.250х600х30 и 400х750х30)

шт

20

28

Монтаж вентрешеток из алюминия

м2

67

29

Обшивка стен вент-шахты металлочерепицей

м2

11

30

Монтаж поручня из алюминиевого профиля

м2

31

31

Установка закладных деталей в монолитных изделиях

т

1,16

32

Отделочные работы:

- штукатурные

м2

642

- малярные

м2

6058,9

- облицовка а/цементными листами

м2

19

- облицовка природным камнем

м2

214,2

- установка элементов лепных

шт

24

33

Устройство оснований и засыпок:

Наименование работ

Ед. изм.

Кол-во

Примечания

- щебень

м3

102,17

- глина плотная

м3

3

- гравий

м3

4

- камень

м3

2

- гравийно-песчаная смесь

м3

162,21

34

Устройство дренажа - трубы стальные

м

6,2

35

Огрунтовка поверхностей

м2

162

36

Укладка ступеней лестниц

шт

38

37

Устройство деревянной обрешетки

м3

4,94

38

Устройство карнизов и подшивка потолков

м2

62,11

39

Прогоны по формам из брусков и каркасы слуховых окон

м3

0,81

40

Огнезащита деревянных крнструкций

м3

17,03

41

Антисептирование деревянных конструкций

м2

115,1

42

Сплошное выравнивание бетонных поверхностей

м2

665

43

Устройство деревянных стропил

м3

7,92

44

Подвесной потолок из алюминиевой рейки

м2

54

45

Вильнюсская штукатурка фасадов

м2

242

46

Внутренние сантехнические работы (водопров.,канализ. и др)

т.р.

9,719

47

Внутренние эл. Монтажные работы (электр. и слаботочн. сети)

т.р.

6,966

48

Прокладка кабеля

м

679

49

Прокладка труб стальных

м

18

50

Прокладка трубы винипластовой

м

200

7.2 Разработка организационно-технологической схемы возведения сооружений

Строительство осуществляется в два периода подготовительный и основной.

В подготовительный период осуществляются работы по расчистке территории, разбивке осей проектируемых сооружений и строений, размещению комплекса временных зданий и сооружений, устройству временных дорог и подъездов, прокладка временных сетей водопровода, канализации, электроснабжения и связи, прокладка проектируемого водоснабжения, ограждению стройплощадки на период строительства, организации площадок складирования.

Подготовительный период технологически увязывается с основными строительно-монтажными работами.

В основной период строительства выполняются противооползневые мероприятия, лифтоподъемник, беседка-пергола, сети электроснабжения и связи, пляжный корпус, прокладка водопровода, благоустройство территории. Все СМР должны выполняться в строгой технологической последовательности, указанной ниже.

Технологическая последовательность строительства

  1. Свайный фундамент башни лифтоподъемника.

  2. Подпорные стены СТ1 и СТ2.

  3. Башня лифтоподъемника от 0.00 до 23.00 (относительно отметки).

  4. Параллельно п.3 – опора 1. Свайный фундамент.

  5. Монтаж балки 2 (длиной 18м) на отм. 23.00.

  6. Башня лифтоподъемника от отм.23.00 до 38.00.

  7. Параллельно п.6 – опоры 2,3.

  8. Монтаж балки 1 (длиной 15м) и балки 3 (длиной 27м).

  9. Башня лифтоподъемника от отм. 38.00 до 48.50.

  10. Беседка-пергола.

  11. Устройство подпорной стены СТ3.

  12. Параллельно п.11 устройство пристенного дренажа.

  13. Пляжный корпус

7.2.1 Противооползневые мероприятия

Строительство противооползневых сооружений увязано со строительством башни лифтоподъемника. До начала работ по подпорным стенам выполняется свайный фундамент лифтоподъемника, т.к. СТ1примыкает к верху плиты фундамента.

Земляные работы по подпорным стенам выполняются экскаватором на пневмоходу ЭО-3322А (емк. ковша 0,5м3) и вручную. Вынутый грунт вывозится автосамосвалами типа КамАЗ в отвал на 20км. Разработка скального грунта производится отбойными молотками.

В первую очередь выполняется СТ1. Простой открытых котлованов недопустим!

Подача арматурных каркасов и установка опалубки производится краном на пневмоходу КС-4361А. Учитывая стесненность строительной площадки и невозможность работы двух кранов одновременно (на подп. Стенах и лифтоподъемнике), используем кран, принятый при возведении башни лифтоподъемника.

Доставка товарного бетона на сторйплощадку осуществляется автобетоносмесителями С-1036Б (объем барабана 6,1м3). Подача к месту укладки в основание стены по лоткам-желобам и на высоту – автобетононасосом СБ-126Б.

По мере возведения подп. Стены СТ1 пазуху между стеной и скалой забить бетоном.

По окончании работ по СТ1 приступить к СТ2. По мере возведения СТ2, за стеной выполнить дренажную засыпку. По окончании работ по подпорным стенам приступить к возведению башни лифтоподъемника.


7.2.2 Лифтоподъемник

Возведение башни лифтоподъемника разбивается на стадии6

1 – от отм. 0.00 до отм. 23.00

2 – от отм.23.00 до отм. 38.00

3 – от отм. 38.00 до отм.48.50

Устройство фундамента взаимоувязано с подпорными стенами – см. выше. Разработка котлована для фундамента лифтоподъемника выполняется экскаватором на пневмоходу ЭО-3322А, оборудованного ковшом емк. 0,5м3, с доработкой до проектных отметок вручную. Излишки грунта вывозятся автосамосвалами типа КамАЗ в отвал на 20км. Для устойчивой работы буровой машины устраиваются временные горизонтальные площадки с покрытием плитами дорожными 1,5х1,5х0,2 по слою щебня толщ. 0,1м.

Бурение скважин осуществляется машиной вращательного действия ЛБУ-50. Подача арматурных каркасов и труб обсадных выполняется краном КС-4361А. Доставка товарного бетона стройплощадку осуществляется автобетоносмесителями С-1036Б (6,3м3).

Основным грузоподъемным механизмом при возведении башни от отм. 0.00 до 23.00 принят кран пневмоколесный КС-4361А, оборудованный стрелой 25,5м с управлением гуськом 10,5м грузоподъемностью до 3т.

При возведении башни используется сборная переставная опалубка. Возведение башни выполняется захватками от перекрытия – до перекрытия: стены, башни, затем перекрытия с ригелями. Монтаж элементов ограждения выполняется краном. После возведения башни до отм. 23.00 выполнить монтаж балки пролетного строения (ниже).

Основными грузоподъемным механизмом при возведении башни лифтоподъемника от отм. 23.00 до 38.00 принят башенный кран КБ-503.2, оборудованный стрелой 45м, грузоподъемностью до 10т.

Башенный кран устанавливается на приколе на месте существующей автобусной остановки, которая на этот период строительства временно переносится. Под рельсовый путь башенного крана устраивается эстакада на сваях Д630х7 (11свай), объединенных между собой монолитным железобетонным ростверком.

Башенный кран ограничен в угле поворота со стороны дороги. Поворот стрелы крана в сторону дороги запрещен! Ограждение площадки выполнено в соответствии с опасной зоной при работе крана на второй и третьей стадиях строительства. Из-за рельефа местности опасная зона имеет переменное значение: от 8.1м у дороги до 10м на пляжной полосе. В зоне действия крана расположены разгрузочная и складская площадка. Подача бетона к месту 3кладки выполняется в бадьях башенным краном. После возведения башни до отм. 38.00 (и одновременно опор 1и 2,3) выполнить монтаж пролетных балок (см. ниже).

Возведение башни от отм. 38.00 до 48.50 выполняется аналогично принятой во 2 стадии строительства.


7.2.3 Опора 1

Бурение скважин осуществляется установкой вращательного действия ЛБУ-50. Подача буровой машины на проектную площадку выполняется с существующей дороги автокраном КС-5473А («Днепр»), грузопод. До 25т. Учитывая предельно малый размер горизонтальной площадки перестановка буровой машины (по площадке) выполняется также автокраном «Днепр».

Установка арматурных каркасов и обсадных труб производится автокраном КС-4571А грузопод. до 10т. Подача товарного бетона выполняется непосредственно к месту укладки с автобетоносмесителями по лоткам-желобам с существующей дороги.

Возведение опоры производится с помощью автокрана КС-5473А стр. 24м с удлинителем 8м ( =0 ) и неуправляемым гуськом 7м ( =30 ), грузопод. до 1,1т. Подача товарного бетона к месту кладки осуществляется автобетононасосом СБ-126Б, на базе КамАЗ, производ. до 65м3/час.

7.2.4 Опоры 2 и 3

Строительные монтажные работы выполняются в следующей технологической последовательности:

  1. Возводится временная подпорная стена (4 ряда блоков) и у шва между опорой 3 и фундаментом беседки – перголы.

  2. Частичное проектное снятие грунта до отметок 41.8 и 41.0 (промежуточная).

  3. Выполнение временной подпорной стены (3 ряда блоков) у опоры 2.

  4. Времен. насыпь несжимаемым грунтом.

  5. Врем. Горизонтальные площадки для устойчивой работы буровой (на отм. 41.00)

  6. БНС с отм. 41.00 – дополнительное бурение до отметки низа ростверка и доп. Длина обсадных труб учтены в объемах работ по ПОС.

  7. Разработка временной насыпи и временной подпорной стены и снятие грунта до проектных отметок.

  8. Опора 2.

  9. Опора 3 – до отм. 41.8.

  10. Разобрать врем. п. стену.

  11. Опора 3.

Выемка грунта выполняется вручную, с помощью средств малой механизации. Подъем грунта на отм. 45.96 осуществляется в бадьях автокраном. Подача буровой машины ЛБУ-50 с отм. 45.96 на отм. 41.80 выполняется автокраном «Днепр» грузопод. 25т со стрелой 10м. Стоянка крана – на пятне беседки-перголы. Подбор блоков временной подпорной стены обусловлен грузопод. крана на максимальном вылете (блок Б16 в основании стены – недопустим!). Подача арматурных каркасов и труб обсадных выполняется также автокраном КС-5473А.

Доставка товарного бетона на стройплощадку осуществляется автобетоносмесителями с-1036Б (объем барабана 6,1м3). Подача бетона к месту укладки производится автобетононасосом СБ-126Б.

7.2.5 Монтаж пролетных балок

Установка пролетных балок в проектное положение технологически увязана со строительством башни лифтоподъемника и опор 1,2и3.

Пролетная балка 2 на отм. 23.00 длиной 18м, весом 18,1т устанавливается в проектное положение гусеничным краном КС-8162 с башенно-стреловым оборудованием.

Длина башни или стрелы –3м. Длина управляемого гуська –19м. Грузоподъемность: при максимальном вылете (21м) –15т; при минимальном (9-14м) –25т. Высота подъема при максимальном вылете –34,5м.

Пролетные балки 1 (длиной 15м, весом 15,1т) и 3 (длиной 27м, весом 32,5т) следует устанавливать в проектное положение последовательно, без какого-либо перерыва при монтаже.

Пролетные балки 1 (2 шт) устанавливаются в проектное положение также краном КС-8162. Затем монтаж пролетной балки 3 осуществляется гусеничным краном КС-8165 грузоподъемностью до 45т.

Монтаж пролетных балок осуществлять при кратковременном закрытии движения по федеральной дороге. Учитывая, что существующая дорога – федерального значения, над дорогой выполнить защитную сетку на высоте 5,5м шириной 18м (включая по 7м от контура витражей). Данное защитное сооружение должно быть разработано до начала работ спецорганизацией, выполняющей СМР.

Подача витражей и отделочных материалов предлагается со стороны опор 2,3 до возведения беседки-перголы.

По окончании СМР перехода на отм. 38.00, приступить к строительству беседки.

7.2.6 Беседка-пергола

Рытье котлована под фундамент беседки выполняется экскаваторе на пневмоходу ЭО-2621А (емкость ковша 0,25м3) и вручную. Траншея частично с усиленным креплением стенок.

Строительство беседки производится автокраном КС-3571а (грузоподъемностью до 12,5т) с заездом на пятно застройки.

Подача товарного бетона при бетонировании:

  • фундамент выполняется по лоткам-желобам с автобетоносмесителя;

  • элементов беседки – автобетононасосом.

7.2.7 Пляжный корпус

Строительство пляжного корпуса осуществляется генподрядной организацией, для выполнения специализированных работ привлекается субподрядные организации.

До начала работ по устройству фундаментов проектируемого здания, должны быть выполнены земляные работы, устройство монолитной стены , удерживающей склон со стороны оси «Н» с параллельным устройством пристенного дренажа.

Земляные работы выполнять с помощью экскаватора на пневмоходу ЭО-3322 с ковшом 0,5м3; доработка грунта до проектных отметок – вручную. Разрабатываемый склон укрепляется инвентарными щитами от обрушения. Земляные работы вести в сухой период. Планировку грунта выполнить бульдозером ДЗ–42Г мощностью 75 л.с. Монтаж сборных элементов дренажных колодцев осуществлять с помощью автокрана КС-3571.

Устройство буронабивных свай диаметром 530мм в основании фундаментов проектируемого здания осуществлять с помощью буровой установки ЛБУ-50. Для обеспечения устойчивости буровой машины, в местах стоянок, планируются горизонтальные площадки с укладкой дорожных плит по щебеночному основанию.

Бетонирование свай и монолитного ростверка осуществляется с автобетоносмесителя СБ-159А. Основными грузоподъемным механизмом при возведении здания пляжного корпуса принимается пневмокран КС-5363 со стр. 20м (грузопод. до 16,2). Автокран используется при подаче арматурных каркасов и бетона на «пятно» здания. Стоянки автокрана устраиваются со стороны свободных подъездов к возводимому зданию.

Все работы по устройству опалубок (и разборке), устройству каркасов, перегородок из кирпича выполняются вручную с использованием средств малой механизации.


7.3 Мероприятия по производству работ в зимний период

По линейной диаграмме в зимний период будут выполняться следующие работы:

  • частично устройство полов;

  • наружная отделка;

  • устройство лифтов;

Штукатурные работы при температуре воздуха от +5С до –15С можно выполнять только с применением растворов, содержащих противоморозные добавки. Температура раствора при нанесении должна быть не ниже +5С. Производить окраску наружных поверхностей зданий в зимних условиях при снегопаде или дожде известковыми цементными составами не разрешается. При температуре воздуха до –20С поверхности можно окрашивать только морозоустойчивыми окрасочными составами.

Обогрев производится с помощью калориферов, нагнетающих теплый воздух. Раствор хранят в утепленных ящиках. Возможно при температуре ниже +5С выполнять штукатурку на растворах с молотой негашеной известью, которая гасится в штукатурном слое, выделяя при этом большое количество тепла, достаточное для быстрого схватывания раствора. Это позволяет наносить обрызг и грунт друг за другом без перерыва.

Качество штукатурных работ должно удовлетворять требованиям СНиП. Слои штукатурки должны быть ровными, гладкими, без трещин. Допускается не более двух неровностей глубиной или высотой до 3мм при накладывании правила длиной 2м. Допустимое отклонение поверхности стен от вертикали 1мм на 1м высоты и не более 10мм на всю высоту. Окрашенные поверхности должны быть однотонными, без пятен, полос, брызг, волосков от кисти.

Для устройства полов в зимний период специальных мероприятий не требуется.

7.4 Расчет материальных ресурсов

Расчет потребности строительства в материалах и полуфабрикатах производим на основании подсчитанных объемов работ. Затем составляем ведомость полуфабрикатов, изделий, конструкций и материалов.

Таблица 7.4 - Ведомость полуфабрикатов, изделий, конструкций материалов

№ п/п

Наименование

Ед. изм.

Кол-во

Примеча-ния

А. Полуфабрикаты, изделия, конструкции

1

Арматура - комплекты заготовок не собранные в каркасы

т

0,65

2

Блоки дверные

м2

1,89

3

Болты строительные

т

0,41

4

Бревна строительные 14-24 мм

м3

0,28

5

Бруски и брусья 70мм и выше, 1 сорт

м3

2,42

6

Бруски 50-60мм, 2 сорт

м3

35,72

7

Воронки с лотками из оцинкованной стали

шт

1,98

8

Грунтовка битумная

кг

84,36

9

Грунтовка перхлорвиниловая

кг

350,15

10

Доски не обрезные 40-60мм, 4 сорт

м3

1,06

11

Доски обрезные 40мм и выше , 1 сорт

м3

22,2

12

Доски обрезные 40мм, 3 сорт

м3

12,07

13

Доски строганые 25-32мм, 3 сорт

м3

455,95

14

Доски строганые 13-16мм, 2 сорт

м3

107,11

15

Звенья труб, прямые 210мм из оцинкованной стали

м

16,5

16

Изделия монтажные

т

0,05

17

Колена простые 0,5 м из оцинкованной стали

шт

1,98

18

Колена секционные 0,7м из оцинкованной стали

шт

5,94

19

Конструкции витражей из алюминиевых сплавов

м2

1107

20

Конструкции сборные

шт

90

21

Насадки резиновые

кг

265,6

22

Обрамление металлическое

кг

5,2

23

Отливы секционные из оцинкованной стали

шт

1,98

25

Прогоны стальные

т

0,34

26

Проволока канатная

кг

34,69

27

Прокладки из губчатой резины

кг

126,71

28

Раствор декоративный

м3

1,36

29

Раствор известковый

м3

14,46

30

Раствор цементно-известковый

м3

6,87

31

Раствор цементный 25

м3

26,84

32

Раствор цементный 50

м3

674,56

33

Раствор цементный100

м3

8,01

34

Сваи-оболочки ж.б.

м3

139,8

35

Сетка тканная из проволоки

м2

91,09

36

Стальные конструкции подмостей массой до 0,5т

т

13,73

37

Стальные конструкции приспособлений для монтажа

кг

528,23

38

Стальные крепежные изделия

т

0,84

39

Сталь угловая равнополочная 50х50мм

т

2,12

40

Щиты опалубки 25мм

м2

9865,15

41

Щиты опалубки стальные

м2

9,77

42

Шпатлевка купоросная

кг

6,47

43

Шпатлевка масляно-клеевая

кг

1154,74

44

Шпатлевка перхлорвиниловая

кг

79,96

45

Электроды Э42

т

42,91

Б. Материалы

1

Арматура

т

119,77

2

Аммоний фосфорнокислый

кг

62,86

3

Антисептик

т

0,093

4

Алебастр (гипс строительный)

т

0,29

5

Бетон

м3

7605,78

6

Гвозди строительные

кг

57,59

7

Кирпич керамический пустотелый

тыс.шт

343,23

8

Клей малярный

кг

2,97

9

Ковровое покрытие

м2

408

10

Контакт керосиновый

кг

9,34

11

Краска ВА-17

т

0,712

12

Краски (сухие, казеиновые)

кг

3392,48

13

Крошка мраморная

т

2,82

14

Краска огнезащитная

кг

0,647

15

Краска поливинилацетатная

кг

848,61

16

Купорос медный

кг

1,85

17

Лак АК-113

т

0,107

18

Мастика тиоколовая

кг

1327,66

19

Мыло хозяйственное

кг

1,85

20

Паста антисептическая

кг

15,52

21

Паста меловая

кг

77

22

Песок кварцевый

т

2,79

23

Плитки керамические

м2

457,28

24

Плинтусы деревянные

м2

428

25

Плиты облицовочные

м2

181,58

26

Растворитель

кг

442

27

Рубероид

м2

83,6

28

Рулонные материалы

м2

124,32

29

Стекло витринное

м2

115,26

30

Стекло профильное

м2

325,36

31

Сульфат аммония

кг

15,63

32

Толь

м2

28,45

33

Эмульсия поливинилацетатная (ПВА)

т

0,002

На основании подсчитанных объемов работ, принятой организационно-технологического схемы возведения объекта, принятых методов производства работ составляем карточку-определитель работы и ресурсов сетевого графика с определением трудоемкости каждой работы по соответствующим таблицам элементных сметных норм.

Трудоемкость по специальным работам определяем в процентах от суммы трудоемкости всех работ в следующих размерах:

- по внутренним сантехническим работам (водоснабжение, канализация, теплоснабжение, газоснабжение) – 10%;

- по электромонтажным работам, включая слаботочные устройства (телефон, радио, телевидение) – 5%;

  • по подготовке объекта к сдаче – 1%.


7.5 Сетевой график и его оптимизация

Разработанная сетевая модель строительства объекта представляется в графической части проекта. Расчетом устанавливается состав работ, лежащих на критическом пути, полные и свободные резервы остальных работ, продолжительность строительства объекта (критический путь). Полученный срок строительства объекта сопоставлен с нормативным сроком, установленным в СНиП 1.04.03-85. Рассчитанный срок строительства оптимизируют на 10% меньше нормативного. Сокращение срока строительства производится за счет сокращения продолжительности работ, лежащих на критическом пути, увеличением количества рабочих и механизмов, увеличением сменности работ, изменением технологической последовательности работ или другими способами.

После оптимизации сетевого графика по времени производится проверка равномерности движения рабочей силы на графике, построенном под линейной диаграммой в графической части проекта. В качестве характеристики используется коэффициент неравномерности движения рабочей силы Кр, показывающий отношение среднесписочного состава рабочих в сутки Nср(сут) к максимальному количеству рабочих в сутки Nмакс(сут):

Кр = Nср(сут) / Nмакс(сут)

Среднесуточный состав рабочих определяется по следующей формуле:

N ср(сут) = Qчел-см / Ткр(в сутках),

Где Q – общая трудоемкость в человеко-сменах при возведении всего объекта;

Т – продолжительность критического пути в сутках, взятая из расчета сетевого графика;

Nмакс(сут) – максимальное число рабочих, взятое из графика движения рабочих.

Критерием удовлетворительной организации работ является достижение коэффициентом Кр значения 0,6-0,9. При получении значени Кр менее этих величин производится оптимизация сетевого графика по рабочим. Имеющиеся большие колебания суточного состава рабочих – “пики” и “провалы” ликвидируют перенесением начала работ или удлинением сроков выполнения этих работ в пределах свободных резервов времени с увеличением или уменьшением состава рабочих, добиваясь значения Кр в указанном интервале. На линейной диаграмме в принятых условных обозначениях показывают новое положение работ (после оптимизации), а при изменении продолжительности выполнения работ и количества рабочих надписывается новые характкристики. На поле первоначального графика движения рабочих наносится оптимизированный график, выделяемый цветными линиями или отмывкой площади оптимизированного графика.

Согласно выполненному сетевому графику, линейной диаграмме и графику движения рабочих проведем анализ запроектированного движения потока.

По времени. Продолжительность критическтго пути составила 258 дней. Нормативный срок строительства 11 месяцев или 11х26 дн = 286 дней.

N ср(сут) = Qчел-см / Ткр(в сутках) = 9408,13 / 276 = 34

Кр = Nср(сут) / Nмакс(сут) = 34 / 47 = 0,72

Критерий организации работ в пределах нормативности достигнут за счет изменения сроков выполнения работ в пределах частных резервов времени.

7.6 Строительный генеральный план

Проектирование строительного генерального плана начинаем с выбора типа монтажного крана на период возведения надземной части здания. Так как объект имеет значительную высоту, то для ведения монтажных работ применим кран КБ-503 с максимальным вылетом крюка Lmax = 35м, шириной колеи 7,5м, минимальным расстоянием от оси головки подкранового рельса до ближайшей выступающей части здания 6,5м, грузоподъемностью крана Qmax = 10т, а при наибольшем вылете стрелы Q = 7,5т. Длина подкрановых путей принята из 4-х секций. На стройгенплане показываем опасную зону действия крана. Обозначены безопасные проходы и проезды.

Строительная площадка имеет удобные подъезды и внутрипостроечные временные дороги для осуществления бесперебойного подвоза материалов, изделий, конструкций и оборудования.

Проектируем сооружение временных зданий на период строительства, необходимых для создания санитарно-бытовых условий работающим и обеспечения производства строительно-монтажных работ, исходя из условий размещения их непосредственно на строительной площадке. Освещение стройплощадки осуществляется прожекторами ПЗС-35 на инженерных мачтах ППМ-6.

7.6.1 Разработка строительного генерального плана

Расчет потребности во временных зданиях и сооружениях.

а) Определим численность работающих на строительной площадке

Nр = 1,06( N + ИТР + МОП ),

Где N – максимальное число работающих в самую многочисленную смену N = 47 чел.

ИТР = 0,06 х N = 0,06 * 47 = 2,46 , принимаем 3 человека

МОП = 0,04х N = 0,04 * 47 = 1,64 , принимаем 2 человека

К = 1,06 – коэффициент, учитывающий отпуска работников и др.

Nр = 1,06 ( 47 + 3 + 2 ) = 55,1 чел. Принимаем 55 человек.

б) Расчет потребности во временных зданиях и сооружениях выполняем в табличной форме.

Таблица 7.6.1 - Расчет потребности во временных зданиях и сооружениях

Наименование зданий и сооружений

Расчетная численность персонала

Норма на 1чел.

Расчетная потребность в м2

Принято

Всего
% одновре-
менного использования
Ед. изм.
кол-во
тип соору-
жения
размеры, площадь

1

2

3

4

5

6

7

8

Контора прораба

4

100

м2

3

12

С - П

6*4=24

Гардеробная

55

70

м2

0,5

17,15

С - П

7*4=28

Душевая

55

50

м2

0,54

13,23

С - П

3*5=15

Помещение для приема пищи

55

30

м2

1

14,7

С - П

6,2*5=31,0

Туалет

55

100

м2

0,1

4,9

С - П

3*1,5=4,5

Помещение для обогрева рабочих

55

50

м2

0,1

2,45

С - П

6*4=24

Расчет складских помещений и площадей

Расчет складских помещений и площадей для осуществления строительства проведен в табличной форме на основании производственной выборки потребности материалов, полуфабрикатов, изделий, конструкций и сетевого графика производства работ при возведении объекта.

Определяем количество материалов, подлежащего хранению на складе по формуле:

М = Q / Т * t * k, где

Q – количество материалов, необходимое для осуществления строительства;

t – норма запаса материала в днях;

k – коэффициент неравномерности потребления материала;

Т – продолжительность потребления материала, равная продолжительности производства работ, в днях.

Определяем расчетную площадь склада, занимаемого материалами без учета проходов по формуле:

Sр = М / Н, где

Н – норма материала, укладываемого на 1м2 склада без учета проходов

Определяем общую площадь склада, включая проходы, по формуле:

Sобщ = Sр / В, где

В – коэффициент использования складских помещений.

Расчет потребности в эл. энергии.

Расчет электрических нагрузок будем вести по формуле:

, где

– коэффициеннт, учитывающий потери эл. энергии в сети;

– коэффициент спроса, учитывающие характер нагрузок;

- коэффициент мощности, зависящий от количества и характера загрузки силовых потребителей;

Рс – номинальные мощности силовых установок, кВт

Рт – то же, аппаратов, участвующих в технологических процессах

Рон – то же наружного освещения.

Расчет нагрузок выполняем в табличной форме по видам потребителей.

Таблица 7.6.3 - Расчет нагрузок силовых потребителей

Наименование потребителей

Рс, кВт

1

Башенный кран КБ - 503

0,2

0,5

68

27,2

2

Сварочный трансформатор

0,35

0,4

245

214

3

Подъемник С - 953 (2шт)

0,15

0,5

16

4,8

4

Штукатурная станция СО - 114 (2шт)

0,5

0,65

10

3,25

5

Малярная станция СО - 115 (2шт)

0,5

0,65

40

30,77

6

Растворонасос СО - 49Б (2шт)

0,7

0,8

8

4,48

7

Компрессорная установка СО - 7А

0,7

0,8

4

2,24

8

Машина для раскатки и наклейки рулонных материалов СО - 122А

0,15

0,6

4,5

2,3

9

Электроинструмент

0,15

0,5

32

9,6

10

Битумоварочный котел СО - 185

0,6

0,82

5,9

4,3

11

Машина для нанесения битумных мастик СО - 122А

0,15

0,6

4,5

1,12

ИТОГО

304,06

Таблица 7.6.4 - Расчет нагрузок по внутреннему освещению

Наименование потребителей

Мощность на 1м2, Вт

Пло-щадь помещения S, м2

Вт

1

Контора прораба

15

24

360

288

2

Санитарно - бытовые помещения

15

102

1530

1224

3

Закрытые склады

3

43,3

129,9

103,92

4

Малярная станция

5

7,5

37,5

30

ИТОГО

1646

– коэффициент одновременности работы для внутреннего освещения

Расчет потребности в сжатом воздухе

Для обеспечения строительства сжатым воздухом применяем передвижной компрессор КС –9 производительностью 9 м3 / мин и передвижной компрессор СО – 7А.

7.6.4 Технико-экономические показатели по проекту

п/п

Наименование показателей

Ед. изм.

Значение показателя

Примечания

1

2

3

4

5

1

Площадь застройки

м2

384,13

2

Строительный объем:

подземной части

м3

2215

надземной части

м3

5130

общий объем

м3

7345

3

Полезная площадь

м2

1480

4

Сметная стоимость

тыс.руб.

58561,2

5

Стоимость 1м3 объема здания

тыс.руб.

7,97

6

Стоимость 1м2 полезной площади

тыс.руб.

19,56

7

Нормативный срок строительства

дни

286

8

Фактический срок строительства

дни

276

9

Коэффициент неравномерности движения рабочей силы

0,72

10

Общая затрата рабочей силы

чел-см

9408,13

11

Среднесписочный состав рабочих в смену

чел.

34

12

Максимальный состав рабочих в смену

чел.

47

13

Затрата рабочей силы на 1м3 объема здания

чел-см

1,28

14

Выработка на одного рабочего в смену

тыс.руб.

15

Степень индустриализации строительства

%

0,48

Доклад

В башне запроектировано два лифта, грузоподъемностью 630кг. Для обзора панорамы во время движения лифта предусмотрено остекление кабины лифта и шахты. Беседка-пергола – расположена на одной из видовых точек комплекса.

В ПЗ описаны все конструктивные решения элементов здания, инженерное оборудование, отделка и произведен теплотехнический расчет наружной стены, совмещенного покрытия и перекрытия 1 этажа.

СКиГС Несущие конструкции – монолитный ж/бетонный каркас, состоящий из 8 колонн сечением 400х800. Горизонтальные пояса представляют собой систему ригелей сечением 600х400 и монолитного перекрытия с проемами под лифтовые шахты. Со стороны пешеходных переходов каркас усиляется железобетонными монолитными диафрагмами толщиной 160-200 мм.

Фундаменты – монолитный железобетонный ростверк по буронабивным сваям. Сваи должны быть забурены в коренные породы не менее чем на 5м (и рассчитаны на выдергивание.)

Балка рассчитана на действие постоянной и полезной нагрузок. В качестве расчетной схемы выбрана балка на точечных опорах с приложенной сверху равномерно распределенной нагрузкой. Расчёты произведены с использованием программного комплекса "Лира-v.9.0". В результате расчета получена таблица расчетных сочетание усилий (РСУ), а также графические изображения внутренних усилий. С помощью подсистемы «Лира-АРМ» произведен расчет армирования плиты по 1 и 2 группам предельных состояний и по результатам этих расчетов произведено верхнее и нижнее армирование плиты, которое выполнено вязаными сетками из арматуры класса А-I, A-III, диметрами 12-18 мм.

АНТИСЕЙСМИЧЕСКИЕ МЕРОПРИЯТИЯ.

1) прежде всего предусмотрены антисейсмические (деформационные) швы между частями здания;

2) при блочном заполнении наружных и внутренних стен принята III категория кладки;

3) с целью уменьшения влияния просадки плиты перекрытия на выложенную стену зазор между верхом стены и плитой заделывают паклей, пропитанной гипсом;

4) усилены закрепления в местах соединений несущих диафрагм жесткости и колонн с выложенными стенами путем креплений стальных скоб и прокладкой пенопласта, препятствующих падению выложенных стен.

ТЕХНОЛОГИЯ Для возведения применяется блочно – переставная опалубка немецкой фирмы «Пери», которая успешно применяется во всем мире. Технологический процесс устройства опалубки состоит в следующем. Щиты опалубки или собранные из них крупные опалубочные элементы устанавливают краном и закрепляют в проектном положении. После бетонирования и достижения бетоном прочности, допускающей распалубливание (70%), опалубку и поддерживающие устройства снимают, соблюдая определенную последовательность. Очистив и при необходимости, отремонтировав опалубку, ее переставляют на новую позицию.

Армирование конструкций отдельными стержнями ведут с учетом расположения их в конструкции.

Технологические карты разрабатывались на возведение башни лифтоподъемника до отметки 23.000 и монтажа пролетных балок (длиной 27м).

На листе 8 графической части разработаны:

  • Схема возведения лифтоподъемника от отм. 0.000 до отм. 23.000;

  • Схема опалубки перекрытия на отм. 13.0004

  • План. Опалубка перекрытия;

  • Схема опалубки колонны;

  • Монолитный железобетонный каркас;

  • Указания к производству работ;

Организация Следующий раздел дипломного проекта посвящен организации, управлению и планированию в строительстве. Графическая часть представлена 2 листами – сетевым графиком и стройгенпланом.

Перед разработкой строительного генерального плана были выполнены необходимые для этого расчеты: расчет складских помещений и площадок, определена потребность во временных зданиях, сооружениях и коммуникациях, произведены расчеты потребности строительства в воде, электроэнергии и других ресурсах.

На 11 листе вычерчен сам стройгенплан на период возведения надземной части здания, показано расположение башенного крана, определена опасная зона работы, даны графики потребности материальных, людских ресурсов, экспликация зданий и сооружений, условные обозначения и ТЭП по проекту.

Сетевой график включает сетевую модель, линейную диаграмму, график движения рабочих. Критический путь (т.е. наиболее длинный по срокам путь) прошел по работам и событиям, обозначенным на сетевой модели двойными линиями. Длина критического пути оказалась равной 276 дней при нормативном сроке строительства 286 дня.

Экономика Самым объемным и подробным разделом в дипломном проекте является раздел экономической части, в котором составлены локальные сметные расчеты на общестроительные, санитарно-технические и электромонтажные работы, а также объектный и сводный сметные расчеты. Локальные сметные расчеты составлялись базисно-индексным способом с умножением на поправочный коэффициент перевода в текущие цены на 1 квартал 2005 года, утвержденный «Кубаньстройценой».

Стоимость объекта получилась равной 58 миллионов, 561 тысяча, 200 руб.

БЖ В пояснительной записке по заданию консультанта кафедры «Безопасности жизнедеятельности» приводится мероприятия по защите склона от обвала и оползней и обеспечение безопасности при строительстве галереи. Также освещены противопожарные мероприятия и действия по охране окружающей среды.

Варианты Уважаемые члены комиссии, до начала проектирования над наши дипломом было произведено сравнение 3-х вариантов заполнения наружных стен монолитного каркаса здания. Это заполнение из пенобетонных блоков, утеплителя и кирпича, утеплителя из пенополистирола и пенобетонных блоков и полностью из пенобетонных блоков, в ходе которых были определены технико-экономические показатели конструктивных решений, определены стоимость, произведен теплотехнический расчет каждого из вариантов. По критерию суммарного экономического эффекта для дальнейшего проектирования из трех вариантов выбираем второй – как имеющий наименьшую толщину стены, удовлетворяющий требованиям теплотехники и незначительно отличающийся по экономическим затратам от третьего, но имеющего самую толстую стену.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее