124389 (592936), страница 4
Текст из файла (страница 4)
Для этого используется непрерывно движущаяся пара цепей, которые изготовлены из стали и оснащены формовочными сегментами, рифлеными с внутренней стороны (рис. 1.6). Формовка гофрированных труб может осуществляться как при помощи сжатого воздуха, подаваемого через отверстия в оболочке сегментов, и заглушки, так и посредством вакуума.
Шлицы в рифленых трубах проделываются вращающимися вокруг изделия фрезерными дисками после его выхода из калибровочного устройства.
Изделия из вспененных полимеров с плотной наружной поверхностью (так называемые интегральные пенопласты) при равном количестве используемого сырья и материалов обладают повышенным моментом сопротивления. В производстве изделий из вспененного материала методом экструзии это является преимуществом [16].
Рис. 1.6. Наружная калибровка гофрированной трубы с использованием сжатого воздуха и формовочных цепей: 1 – экструзионная головка; 2 – формующая щель; 3 – формовочная цепь; 4 – уплотнительная пробка; 5 – выход сжатого воздуха
Возможность изготовления профилей и труб из вспененных полимеров требует некоторого преобразования экструзионной головки и калибровочного оборудования.
1.1.4 Особенности переработки полиэтилена
Как отмечалось полиэтилен легко перерабатывается на стандартном экструзионном оборудовании без каких-либо существенных изменений в конструкции агрегатов, комплектующих линию.
Поверхности калиброванного профиля можно улучшить путем кратковременного оплавления, пропуская профиль через нагревательный туннель, в котором установлены инфракрасные нагреватели. Степень нагрева поверхности профиля и прогрева его в целом следует контролировать и регулировать интенсивность теплового излучения. При недостаточном охлаждении внутренней поверхности профиля его повторный нагрев может деформировать форму изделия, и изделие пойдет в брак. Наиболее благоприятный вариант оплавления поверхности – профиль полностью остыл ниже Т, а нагрев поверхности происходит очень быстро и на малую глубину.
Улучшения качества поверхности профиля можно добиться также путем введения в материал специальных добавок [12, 22], создающих при течении расплава смазывающий слой на границе расплав-металл. Благодаря этому течение приближается к стержневому, уменьшается разбухание расплава и искажение формы экструдата. Например, российская фирма «Сталкер» [22] предлагает процессинговую экструзионную добавку ПО-АР 11 для улучшения перерабатываемости ПЭВП, ПЭНП, ПП, повышения внешнего вида и других качественных характеристик изделий из полиолефинов. Содержание добавки в композиции не превышает 0,5–2,5%.
При выборе такого рода добавок и подборе режима переработки необходимо следить за тем, чтобы течение было стабильное и не приобретало характер режима течения с периодическим проскальзыванием (stick-sleep). Это регулируется с помощью подбора оптимального количества добавки и температуры по зонам головки.
Предварительный подогрев материала снижает удельные энергозатраты на переработку и улучшает качество изделий, поэтому желателен подогрев материала в бункерных сушилках до температуры 80–90°С.
Полиэтилен перерабатывается в довольно широком диапазоне температур. Для повышения производительности процесса рекомендуется снижать температуру расплава. Чем выше температура массы, тем больше потребуется отвести тепла от профиля и удлинить путь калибрования и охлаждения. Резкое охлаждение профилей сложной формы не желательно, так как это вызывает их коробление. ПЭВП с ПТР = 0,2–0,5 г/10 мин экструдируют при температуре раплава 190–195ºС, тогда как для ПЭ с ПТР = 0,6–1,5 г/10 мин температура экструзии на 10–15°С ниже. ПЭНП экструдируют при температурах 150–170°С. С увеличением температуры качество поверхности профиля улучшается, так как профиль приобретает высокий глянец. Выбор температуры экструзии зависит от конструкции используемого экструдера, технологической оснастки, формы экструдируемого профиля и реологических свойств марки ПЭ. Основными особенностями материала, которые следует учитывать при экструзии профильных изделий, являются:
-
высокая прочность расплава, что допускает большие вытяжки экструдата;
-
широкий диапазон температур переработки;
-
высокая эластичность расплава и зависимость ее от параметров технологического процесса, причем этот фактор ограничивает использование полиэтилена (особенно ПЭВП) для производства изделий сложной конфигурации;
-
высокая кристалличность материала, требующая равномерного охлаждения экструдата при создании значительного удельного давления калибрования;
-
значительная термическая усадка материала при охлаждении и склонность к накоплению остаточных напряжений;
-
быстрое охлаждение расплава ПЭВП и сравнительно медленное – расплава ПЭНП определяет возможность формования относительно сложных изделий для ПЭНП и затруднено для ПЭВП.
Для уменьшения остаточных напряжений жесткие полиэтиленовые профили (ПЭВП) могут быть подвергнуты термообработке на оправке в воде при температуре 80–90°С в течение 30 мин. Благодаря термообработке можно уменьшить продольную кривизну отрезков профилей до приемлемого уровня.
ЛПЭНП легко перерабатывается на том же оборудовании, что и ПЭНП и ПЭВП. Для некоторых марок ЛПЭНП необходимо правильно подобрать конструкцию шнека и режим охлаждения загрузочной зоны экструдера [13, 16]. При экструзии расплав ЛПЭНП меньше коробится, чем у ПЭНП и особенно ПЭВП, а стабильность размеров выше. Температура экструзии 170–200 «С, температуру воды, подаваемой в калибратор, лучше поддерживать на уровне 20–60ºС. Режим экструзии конкретных марок подбирается при наладке технологического процесса.
Чистка оборудования и оснастки. Чистка шнека и оснастки возможна с помощью загрузки в экструдер смеси-консерванта на основе ПВХ. Высоковязкая смесь удаляет прилипший расплав к шнеку, цилиндру, деталям головки. После «прогонки» консерванта не представляет труда вынуть и механически почистить шнек и детали головки. Прогонку консерванта следует производить при температуре 160–170°С, оставлять консервант в головке не рекомендуется, так как удалить его можно только более вязким расплавом, для чего потребуется много времени и материала. Механическая чистка деталей от консерванта при температуре 100–150°С затруднений не вызывает. Если детали головки, особенно фильеры, выполнены неразъемными и имеют малые формующие зазоры, необходимо позаботиться о подходящем инструменте для чистки. Это тонкие упругие пластины или стержни со скругленными краями и имеющие нужную ширину или диаметр, поскольку понадобится целый набор таких пластин для чистки каналов различных размеров.
Большие и тяжелые головки отжигают в печах во взвешенном слое окиси алюминия при температуре до 400–500С. Остатки материала в головке частично сгорают, после чего необходима механическая чистка остатков и полировка деталей.
Фирма Rolf Schlicht GmbH, ФРГ, выпускает специальный гранулят для удаления остатков термопластов из экструзионных головок [23]. Гранулят состоит из ПЭВП, пропитанного концентрированным раствором нейтральной неорганической соли. Он не пылит и после изготовления без осложнений хранится на складе. При прохождении через оборудование соль переводит остатки термопластов в низковязкое состояние, и они легко соединяются с ПЭ. Такой способ предпочтителен, так как не требует демонтажа и нового монтажа головки, поэтому очищенную таким способом головку можно целиком хранить до следующей установки на экструдер. Предлагаются и другие средства для чистки оснастки, например, фильерная паста ООО «Полимер-Проект XXI» [24], назначение которой аналогично. Выбор метода чистки оборудования и оснастки зависит от многих причин и определяется конкретными условиями производства.
Переработка ВМПЭ. Основным методом переработки ВМПЭ в погонажные изделия является плунжерная экструзия, на долю которой приходится примерно 35% общего объема переработки ВМПЭ. С помощью этого метода получают полуфабрикаты типа простых профилей, труб, стержней, прутков. В плунжерных экструдерах полиэтиленовый порошок сжимается до образования уплотненной массы, которая в последней обогреваемой зоне цилиндра пластицируется под высоким давлением. Температура переработки составляет 180–200ºC.
Широкому применению ВМПЭ препятствует трудность его переработки вследствие высокой вязкости расплава. Материал не плавится при температуре выше точки плавления его кристаллической фазы (136°С), а только переходит в вязкоэластичное состояние.
Калибрование и охлаждение ограничивает производительность технологической линии. При выборе способа калибрования и охлаждения следует ориентироваться на максимальную (пластикационную) производительность экструдера, а расчет длины калибрующих и охлаждающих устройств также выполнять по теоретически возможной производительности.
Около половины всего выпускаемого полиэтилена ВД расходуется на производство пленки, используемой в сельском хозяйстве и для упаковки продуктов. Вообще же пленки и листы могут быть изготовлены из ПЭ любой плотности.
Пленки изготавливаются двумя методами: экструзией расплавленного полимера через кольцевую щель с последующим раздувом или экструзией через плоскую щель с последующей вытяжкой. Они выпускаются толщиной 0,03 – 0,30 мм; шириной до 1400 мм (в некоторых случаях до 10 м) и длиной до 300 м.
Кроме тонких пленок из ПЭ изготовляют листы толщиной 1–6 мм и шириной до 1400 мм. Их применяют в качестве футеровочного и электроизоляционного материала и перерабатывают в изделия технического и бытового назначения методом вакуумного формования.
1.1.5 Модификация полиэтиленовых композиций
Большинство полимеров обладают традиционным комплексом свойств. Придать им специфические свойства можно с помощью различных методов модификации. Модификации полиэтилена посвящено много работ [25–32]. В основном полимеры – это прозрачные или в зависимости от степени кристалличности матово-белые бесцветные материалы. В ряде случаев вследствие особенностей химического строения и наличия добавок они окрашены в желтые, красные, коричневые, черные тона. Тем не менее способность окрашиваться в различные цвета является одним из важнейших качеств, которое обусловило широкое применение пластмасс, особенно в быту. Это делает окрашивание необходимой частью технологии переработки полимерных материалов.
Окрашивание пластмассовых изделий может проводиться либо предварительным введением красящих веществ [0,05–2% (масс.)] в полимер, либо окрашиванием поверхности сформованного изделия (к последнему варианту можно отнести различные виды декоративной обработки) [32].
Первоначальной технологической задачей при изготовлении окрашенных пластмассовых изделий является выбор красящего вещества. Помимо чисто эстетических соображений при этом необходимо учитывать следующие требования: термостойкость красящих веществ не должна быть ниже, чем у окрашиваемого полимера; химическая стойкость красящих веществ должна обеспечивать эксплуатацию изделий в требуемых условиях; красящие вещества не должны ухудшать свои характеристики при взаимодействии с другими добавками (отвердителями. ускорителями отверждения и т.д.); светостойкость красящих веществ не должна быть ниже, чем у окрашиваемого полимера; они должны хорошо диспергироваться и равномерно распределяться в массе полимера; они не должны мигрировать из массы на поверхность изделия, в том числе в средах органических и неорганических растворителей (этот процесс может привести к необратимому изменению или ослаблению окраски – выцветанию, а также к загрязнению соприкасающихся с такими материалами поверхностей как при эксплуатации, так и при переработке – плейт-эффект); красящие вещества должны быть нетоксичны и по возможности легкодоступны.
Красящие вещества подразделяют на красители и пигменты.
Красители – это красящие вещества, растворимые в полимерах. Обычно это азо- и антрахиноновые соединения различных цветов. К этой группе также относится распространенный черный краситель – нигрозин. Вследствие хорошей совместимости красителей с полимера ми, окрашенные ими пластмассовые изделия имеют прекрасный внешний вид, блестящую поверхность, равномерную интенсивную окраску, сохраняют прозрачность. Однако миграционная способность их велика, они нестойки к действию органических растворителей. Хотя разработаны новые виды красителей с пониженной миграционной способностью, доля их в общем объеме применяемых в переработке пластмасс красящих веществ составляет лишь несколько процентов.
Пигменты – это красящие вещества, нерастворимые в полимерах. Пигменты обладают минимальной миграционной способностью.
Неорганические пигменты – это различные природные и синтетические оксиды и соли металлов. В эту группу входят наиболее термо– свето-, химически стойкие красящие вещества. Однако при использовании неорганических пигментов требуются наибольшие усилия для их распределения в полимере. В общем объеме применяемых при производстве пластмасс красящих веществ доля этих пигментов составляет около 80%.
К органическим пигментам относятся нерастворимые в полимерах органические вещества, как правило синтетические, со сложной химической структурой: фталоцианиновые, азо-, полициклические, диокса-зиновые пигменты, а также лаки, получаемые осаждением красителей из их водных растворов. Эти красящие вещества лучше диспергируются в полимерах, однако они менее термостабильны, чем неорганические пигменты, выше их миграционная способность.
Следующей задачей, стоящей перед технологом, занимающимся окрашиванием пластмассовых изделий, является выбор способа окрашивания. Несмотря на то что окраска изделия определяется цветом тонкого, в несколько десятых долей миллиметра слоя, наиболее распространенными способами окрашивания полимеров являются способы, связанные с введением красящих веществ в массу полимера. Больший расход красящего вещества в этом случае компенсируется значительно более надежным и устойчивым окрашиванием. Кроме того, объемное окрашивание требует значительно меньшего количества дополнительных технологических операций, чем поверхностное.
Применяют следующие способы введения красящих веществ в полимерный материал: окрашивание в процессе синтеза полимера; сухое окрашивание; окрашивание в расплаве; окрашивание изделия в растворе красящего вещества через поверхность изделия.
Сухое окрашивание. При сухом окрашивании гранулы полимера опудриваются порошками красящего вещества. Сухое окрашивание не имеет самостоятельного значения, а является промежуточной, подготовительной стадией изготовления окрашенных пластмасс и используется с целью повышения равномерности распределения красящего вещества в массе полимера. Сухое смешение проводят в различных смесителях инерционного типа, в тихоходных или скоростных лопастных смесителях. Пигменты рекомендуется подвергать предварительному размолу. При увеличении концентрации красящих веществ в смеси, с целью предотвращения расслоения различных по дисперсности гранул полимера и частиц пигментов, применяются смачиватели (например, вазелиновое масло, полиэтиленовый воск и другие вещества), закрепляющие порошки на поверхности гранул. Количество смачивателей должно быть минимальным в связи с возможностью слипания гранул и ухудшения условий питания перерабатывающих агрегатов и транспортирующей способности шнековых машин.
Окрашивание в расплаве. В этом случае диспергирование и распределение красящих веществ проводится в расплаве полимера под действием сдвиговых напряжений и деформаций в перерабатывающем оборудовании. Этот способ является наиболее важным в технологии переработки пластмасс.












