124322 (592924), страница 2
Текст из файла (страница 2)
Таблица 1.
| Ст18ХГС | C, % | Mn, % | Cr, % | Ni, % | Si, % | P, % | S, % |
| 0,15-0,22 | 0,80-1,10 | 0,80-1,10 | 0,30 | 0,90-1,20 | 0,030 | 0,025 |
Сталь 18ХГС низкоуглеродистая, среднелегированная, 2 группа свариваемости, легированных добавок~3%.
Литые, кованые и штампованные заготовки обычно поступают на сварку в виде, не требующем дополнительных операций. По-другому обстоит дело с деталями из проката. После подбора металла по размерам и маркам стали необходимо выполнить следующие операции: правку, разметку, резку, обработку кромок, гибку и очистку под сварку.
Правка осуществляется созданием местной пластической деформации обычно в холодном состоянии. Наиболее частыми видами деформации листовой стали являются волнистость, местные выпучины и вогнутости, заломленные кромки, серповидность в плоскости листа.
Для правки листов и полос толщиной от 0,5 до 50мм широко используют многовалковые машины (число валков более 5). Исправление достигается многократным изгибом при пропускании листов между верхним и нижним рядами валков, расположенных в шахматном порядке. Листы толщиной менее 0,5мм правят растяжением с помощью приспособлений на прессах или на специальных растяжных машинах. Мелко- и среднесортовой, а также профильный прокат правят на роликовых машинах, работающих по схеме листоправильных.
В случаи необходимости создания более значительных деформаций правка и гибка должны производится в горячем состоянии.
Разметка. Разметка может быть индивидуальной (такая разметка трудоёмкая) и по наметочным шаблонам. Наметка более производительна, однако изготовление специальных наметочных шаблонов не всегда экономически целесообразно. Оптический метод по чертежу, проектируемому на размечаемую плоскость, позволяет вести разметку без шаблона.
Резка металла и обработка кромок. Механическую резку производят на ножницах, на отрезных станках и штампах на прессах. Для резки используют ножницы листовые с наклонным ножом, высечные, дисковые, комбинированные, пресс-ножницы, сортовые для резки уголка, швеллеров и двутавров, ручные пневматические и электрические. Отрезные станки применяют для резки труб, фасонного и сортового материала. Детали сварных конструкций вырезают на отрезных стаканах с дисковыми и ленточными пилами, трубоотрезных стаканах, на станках с абразивными кругами, в некоторых случаях гладким диском за счёт сил трения.
Термическая разделительная резка менее производительна, чем резка на ножницах, но более универсальна и применяется для получения свариваемых заготовок разных толщин как прямолинейного, так и криволинейного профиля.
Термическая разделительная резка основана на способности металла сгорать в струе технически чистого кислорода и удалении продуктов сгорания из полости реза. В зависимости от источника теплоты, применяемого для резки, различают газовую резку, основанную на использовании теплоты газового пламени; дуговую резку расплавлением с использованием теплоты электрической дуги, обычно горящей между разрезаемым металлом и электродом; плазменно-дуговую резку (резку сжатой дугой) - особый вид дуговой резки, основанный на вытеснении металла из полости реза направленным потоком плазмы.
Металл из полости реза в процессе термической резки удаляется:
-
термическим способом за счёт расплавления и вытекания металла из полости реза;
-
химическим способом за счёт окисления металла, его превращения в окислы и шлаки, которые также удаляются из полости реза;
-
механическим способом за счёт механического действия струи газа, способствующей выталкиванию жидких и размягчённых продуктов из полости реза.
Термическая резка разделяется на ручную, механизированную и автоматическую. Ручная и механизированная резка выполняются по разметке, автоматическая - с помощью копирных устройств, по масштабному чертежу и на машинах с программным управлением.
Кромки подготавливают термическими и механическими способами. Кромки с односторонним или двусторонним скосом можно получить, используя одновременно два или три резака, располагаемых под соответствующими углами.
Гибка Листовые элементы толщиной 0,5-50мм для получения цилиндрических и конических поверхностей гнут на листогибочных вальцах с валками длинной до 13м.
Очистка поверхности металла под сварку. Очистку применяют для удаления с поверхности металла средств консервации, загрязнений, смазочно-охлаждающих жидкостей, ржавчины, окалины, заусенцев, грата и шлака.
При сварке с неочищенной поверхностью возникают различные дефекты шва: поры и трещины, а также ухудшается формирование шва. Для очистки проката, деталей и сварных узлов используют механические и химические методы. К механическим методам относятся дробеструйная и дробемётная обработка, зачистка металлическими щётками, иглофрезами, шлифовальными кругами и лентами.
Химическими методами очистки обезжиривают и травят поверхности свариваемых деталей.
Для предохранения металла от коррозии кроме очистки обычно пассивируют или грунтуют поверхности, что позволяет сваривать металл без удаления защитного покрытия.
Рис. 2 Геометрические (А) и конструктивные (Б) размеры кромок.
- угол скоса кромки;
S – толщина металла;
а – притупление;
Стыки конструкций по мере сборки закрепляют прихватками – короткими сварными швами для фиксации взаимного расположения подлежащих сварке деталей. Прихватки размещают в местах расположения сварных швов, за исключением мест их пересечения. Длина прихваток для сталей с пределом текучести до 390 МПа должна быть не менее 50мм и расстояние между ними – не более 500м; для сталей с пределом текучести до 390 МПа прихватки должны быть длиной 100мм и расстоянием между ними – не более 400мм.
Моя конструкция не нуждается в досварочной термообработке, потому что она слишком большая по диаметру и по толщине металла.
Определение и расчёт параметров режима сварки конструкции начнём с диаметра электрода; диаметр электрода будет равен в первом слое dэ1=4 мм, а во втором слое dэ2=5 мм; первым накладывается корневой слой, а вторым – кольцевой. Идём дальше и определяем силу сварочного тока по формуле:
I=kd;
I1=40dэ1; I2=40dэ2; из этих значений сделаем расчёт:
I1=404=160 А ; I2=405=200 А; далее находим марку электрода: УОНИИ - 13/45, далее находим род и полярность тока: -I(-) постоянный ток обратной полярности.
Для моей конструкции используется марка электрода УОНИИ - 13/45.
Условное обозначение электрода:
Э42-УОНИИ-13/45-5,0-УД-2
Е
-432 (5) - Б 1 0
Э - электрод,
42 - временное сопротивление в=42кг·с/мм,
Э42 - тип электрода,
УОНИИ - 13/45-марка электрода по ГОСТу,
5 – dэ = 5мм,
У - для сварки углеродистых сталей,
Д - толстое по пластичности обычный,
Е - состав электродного покрытия,
432(5) - условное табличное обозначение хими-ческого состава электродного (наплавленного) металла,
Б - основное покрытие,
1 - положение сварки (для сварки в любом пространственном положении),
0 - -I(-) постоянный ток обратной полярности.
Классификация электродов: Электроды, применяемые для сварки и наплавки, классифицируются по назначению (для сварки стали, чугуна, цветных металлов и для наплавочных работ) технологическим особенностям (для сварки в различных пространственных положениях, сварки с глубоким проплавлением и ванной сварки), виду и толщине покрытия, химическому составу стержня и покрытия, характеру шлака, механическим свойствам металла шва и способу нанесения покрытия (опресовкой или окунанием).
Основными требованиями для всех типов электродов являются: обеспечение стабильного горения дуги и хорошего формирования шва; получение металла сварного шва заданного химического состава; спокойное и равномерное расплавление электродного стержня и покрытия; минимальное разбрызгивание электродного металла и высокая производительность сварки; лёгкая отделимость шлака и достаточная прочность покрытий; сохранение физико-химических и технологических свойств электродов в течении определённого промежутка времени; минимальная токсичность при изготовлении и при сварке.
По назначению металлические электроды для РДС сталей и наплавки поверхностных слоёв с особыми свойствами, изготовляемые способом опресовки, подразделяются (ГОСТ 9466-75):
для сварки углеродистых и низкоуглеродистых сталей с временным сопротивлением разрыву до 60 кгс/мм2 (600 МПа), с условным обозначением У;
для сварки легированных сталей с временным сопротивлением разрыву свыше 60кгс/мм2 (600 МПа) - Л;
для сварки легированных теплоустойчивых сталей - Т;
для сварки высоколегированных сталей с особыми свойствами - В;
для наплавки поверхностных слоёв с особыми свойствами - Н.
По толщине покрытия электроды подразделяются на электроды с тонким, средним, толстым и особо толстым покрытиями.
По виду покрытия электроды подразделяются: с кислым покрытием А, с основным покрытием - Ц, с рутиловым покрытием - Р, с покрытием смешанного вида - с двойным обозначением, с прочими видами покрытий - П.
Рис.3. А) Заполнение шва по сечению, Б) Заполнение шва по длине.
Расчёт сварных швов на прочность:
При расчёте сварных швов на прочность нужно учитывать что стыковые швы работают на сжатие и растяжение, а угловые на срез.
Прочность углового шва на 30 меньше прочности стыкового.
Расчёт на прочность ведётся по формуле:
для углового шва:
Nр = 0,7RсвKLшв;
Rcв = 18107 Н/м2;
К = 1610-3м;
Lшв = d = 3.14219 = 688 мм;
Решение:
Lшв = 0,688+0,688 = 1,376 м;
Nр = 0,7181071610-31,376 = 2,8106 Н.
Дефекты сварных соединений.
Согласно ГОСТ 23055 - 78* для соединений, выполненных сваркой плавлением, возможно образование шести видов дефектов.
пористость шва: сферическая, канальная, цепь пор, группа пор, линейная (протяжённая).
шлаковые и металлические включения: разделяются на шлак компактный, шлак линейный, металлические включения, поверхностные включения.
несплавления: по кромкам и между слоями многослойного шва.
дефекты формы шва: чрезмерный провар корня (прожог, протёк), неровности (наплывы, вмятины и пр.), подрезы, несовпадения кромок и т.п.
Все эти дефекты ухудшают механические свойства сварных соединений и, следовательно, работоспособность конструкций. Часть из них, такие, как наружная пористость и наружные включения, прожоги, неплотность шва, подрезы, вмятины, недостаточные размеры швов и усилений, должна быть исправлена немедленно при обнаружении силами сварщика, допустившего дефект.
Наиболее опасны и недопустимы трещины всех видов, при обнаружении которых сварного соединения бракуется или же подлежит исправлению. Исправление возможно при наличии единичных трещин, а сварное соединение с множественными трещинами исправлению не подлежит. Для ликвидации единичной трещины предварительно засверливают металл на расстоянии примерно 30 - 50 мм от её концов, после чего делают разделку трещины, затем подогревают участку металла на её концах до температуры 100 - 150°С и одновременно заваривают подготовленную трещину.
Для моей конструкции используется: Ультразвуковая дефектоскопия (УЗД) основана на использовании ультразвуковых колебаний (УЗК), которые представляют собой колебания упругой Среды со сверх-высокими частотами (более 20 кГц), не воспринимаемыми человеческим ухом. Ультразвуковые волны могут проникать в металл на большую глубину и отражаться от неметаллических включений и других дефектов. Для контроля применяют колебания частотой 0,5 - 10 Мгц. Введение этих колебаний осуществляют пьезоэлементами (пьезопреобразователями), которые состоят из пьезопластин толщиной, равной половине длины волны, излучаемой УЗК. Пьезоэлектрические материалы обладают способностью преобразовывать действие электрического поля в механические деформации и наоборот - действие механических деформаций в электрические заряды. Пластины изготавливают из пьезоэлектрической керамики или кварца и наклеивают на призмы из оргстекла, полистирола, капрона и других материалов, которые поглощают ультразвук и обеспечивают высокое затухание колебаний, что позволяет получать короткие зондирующие импульсы. Для приложения и съёма электрического поля на противоположных поверхностях пластины нанесени серебряные электроды. Пьезопреобразователь обладает свойством излучать УЗК в металл через контактирующую смазку (глицерин, солидол и т.п.) синхронно с приложенным высокочастотным током и воспринимать отражённые от дефектных мест обратные УЗК, преобразуя их в электрические импульсы, фиксируемые электронно - лучевой трубкой. Чаще всего применяют наклонный преобразователь, работающий по совмещённой схеме и служащий одновременно излучателем и приёмником УЗК. Применяются также раздельно совмещённый преобразователь, в котором одна пьезопластина служит излучателем УЗК, а другая приёмником. Примерная технология контроля приведена на рис. 4. Контроль, как правило, проводят с одной стороны соединения (для толщины до 50 мм), но с обеих сторон шва, как показано на рисунке. В настоящее время УЗК применяют всё более широко для проверки качества стыковых и угловых швов и даже стыков арматурной стали. Иногда для большей надёжности сомнительные места просвечивают.















