115464 (591943), страница 4

Файл №591943 115464 (Методика роботи над простими задачами, що розкривають конкретний зміст арифметичних дій) 4 страница115464 (591943) страница 42016-07-30СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Дослідженнями встановлено, що вже сприймання задачі розрізняється у різних школярів одного класу. Здібний до математики учень сприймає і одиничні елементи задачі, і комплекси її взаємопов'язаних елементів, і роль кожного елементу в комплексі. Середній за успішністю школяр сприймає лише окремі елементи задачі. Тому при розв'язуванні задачі необхідно аналізувати зв'язок та співвідношення елементів задачі. Так спроститься вибір засобів переробки умови задачі. При розв'язуванні задач часто доводиться звертатися до пам'яті. Індивідуальна пам'ять здібного до математики школяра зберігає не всю інформацію, а в основному „узагальнені та згорнуті структури". Зберігання такої інформації не обтяжує мозок надлишковою інформацією, а ту, що потрібно запам'ятати, дозволяє довше зберігати та легше використовувати. Навчання узагальненням при розв'язуванні задач розвиває, таким чином, не лише мислення, але й пам'ять.

Математичні задачі повинні перш за все пробуджувати думку молодших школярів, заставляючи її працювати, розвиватися, вдосконалюватися. Кажучи про активізацію мислення, не можна забувати, що при розв'язуванні задач учні не лише виконують побудови, перетворення та запам'ятовують формулювання, але і навчаються чіткому мисленню, вмінню розмірковувати, зіставляти та протиставляти факти, знаходити в них загальне і відмінне, робити правильні умовиводи [46, 16].

Задачі мають активізувати розумову діяльність учнів. Ефективність навчальної діяльності, спрямованої на розвиток мислення, багато в чому залежить від ступеня творчої активності школярів при розв'язуванні задач. Отже, необхідні такі задачі та вправи, які б активізували розумову діяльність.

А.Ф. Єсаулов поділяє задачі на наступні види: задачі, розраховані на відтворення (при їх розв'язуванні спираються на пам'ять та увагу); задачі, розв'язування яких приводить до нової, невідомої до цього думки, ідеї; творчі задачі. Активізує та розвиває мислення розв'язування задач двох останніх видів. Розглянемо деякі з них [15, 71-72].

1. Задачі, вправи, що включають елементи дослідження. Найпростіші дослідження при розв'язуванні задач треба пропонувати, починаючи вже з перших практичних занять. Згодом необхідно давати не лише задачі з елементами досліджень, але й задачі, що включають дослідження як обов'язкову складову частину. Такі дослідження необхідно включати у розв'язування багатьох геометричних задач на побудову, задач математичного аналізу тощо.

Задачі та вправи з виконанням деяких досліджень можуть знайти своє місце на будь-яких уроках математики у початковій школі.

2. Задачі на доведення здійснюють суттєвий вплив на розвиток мислення учнів. Саме при виконанні доведень відточується логічне мислення, розроблюються логічні схеми розв'язування задач, в школярів виникає потреба обґрунтувати математичні факти.

3. Задачі та вправи у пошуку помилок також відіграють суттєву роль у розвитку математичного мислення учнів. Такі задачі привчають звертати увагу на особливо тонкі місця у логічних міркуваннях, допомагають розрізняти дуже схожі поняття, привчають до точності суджень і математичної строгості і т.д. Перші кроки у відшуканні помилок повинні бути нескладними.

Таким чином, комплекс вправ, що складається із простих задач різного типу, шляхом поступового ускладнення розумових дій може сприяти вивченню конкретних математичних понять, формуванню математичних уявлень, і разом з цим у кінцевому результаті привести до якісних та кількісних змін у рівні розвитку мислення молодших школярів.

Розділ 2. Методика роботи над простими задачами на розкриття конкретного змісту арифметичних дій

2.1 Ступені і етапи роботи над задачами

Роль простих задач у навчанні математики надзвичайно велика. Вони є основним засобом у формуванні поняття про арифметичні дії та величини. В процесі розв'язування простих задач учні опановують основні прийоми роботи над задачею.

Важливим елементом задачі, що дає змогу досягти мети, є розв’язування [3, 40]. Розв'язування задачі — це «процес перетворення її умови, який здійснюється на основі знань з тієї галузі, до якої належить задача, певних логічних правил виводу і особливих правил інтуїтивного (евристичного) характеру». В найбільш загальному плані можна сказати, що цей процес складається з таких етапів: аналіз задачі, пошук плану розв'язування; здійснення знайденого плану розв'язування (розв'язання); з'ясування, що здобутий результат задовольняє вимогу задачі (перевірка розв'язання); аналіз розв'язування (з'ясування прийомів розв'язування, розгляд інших способів розв'язування).

Зазначені етапи в тій або іншій мірі діяльності мають місце і знаходять застосування і в методиці розв'язування задач 1-4 класів. При цьому виділяють здебільшого такі чотири етапи: І — ознайомлення із змістом задачі; II — аналіз задачі і відшукання плану розв'язування; III — розв'язання задачі; IV — перевірка розв'язування. Розглянемо методику роботи на кожному з цих етапів [2].

1. Ознайомлення із змістом задачі. Усвідомлення змісту задачі — необхідна умова її розв'язання. Учень не повинен приступати до розв'язування задачі, не зрозумівши її умови. Тому ознайомлення з задачею містить власне опанування її змісту і перевірки усвідомлення його дітьми.

Приступаючи до розв'язування задачі, важливо сприйняти її в цілому, а потім вже розбивати на окремі частини. При фронтальному ознайомленні вчитель читає (або переказує) задачу двічі. Першого разу задачу читають з метою ознайомлення з її змістом в цілому. Другого разу задачу читають частинами і так, щоб кожна частина містила певну смислову «одиницю» тексту. Поділ задачі на частини здебільшого передбачає виділення окремих числових даних її. Під час другого читання доцільно на дошці записувати умову. Читаючи задачу, вчитель паузами та інтонацією виділяє числові дані та слова, що визначають вибір дії та запитання задачі. Якщо в задачі є маловідомі дітям терміни, то їх слід пояснити заздалегідь, застосовуючи для цього предметне ілюстрування або малюнки.

Щоб перевірити, як учні усвідомили умову задачі, вчитель задає учням запитання (за смислом окремих частин) або пропонує переказати всю задачу. З метою активізації контрольного повторення задачі слід наперед ставити перед учнями те або інше завдання. Наприклад: «Послухайте задачу і повторіть вголос її запитання», «Прочитайте задачу самостійно і скажіть, що нам відомої про...».

2. Аналіз задачі і відшукання плану її розв'язування. Учень зможе успішно розв'язати задачу, якщо розумітиме значення слів і виразів, з яких вона побудована. На початку навчання і при розгляді нових задач усвідомлення значення слів та зв'язків між величинами досягається через відтворення тієї реальної проблемної ситуації, моделлю якої є задача. В подальшому дедалі частіше застосовується вербальний (словесний) аналіз (розбір) задачі.

Вербальний аналіз в широкому розумінні містить, з одного боку, семантичний аналіз, а з другого — знаходження способу розв'язування її. Суть семантичного аналізу полягає в тому, що на основі аналізу тексту задачі визначають окремі значення величин, а також відношення, що їх пов'язують.

Під час аналізу треба з'ясувати, скільки величин розглядається в задачі та які вони мають значення. Задавання кожного значення величини звичайно складається з трьох частин: назви величини, зазначення особливості певного значення і числове значення, якщо воно відоме (задане). Якщо числове значення не задано, то воно є невідомим, і якщо, крім того, в завдання цього невідомого значення входить запитання «скільки»?» чи вимога «знайти», то це значення шукане [27, 23].

3. Розв'язання задачі — це виконання арифметичних дій відповідно до складеного плану. Планом користуються і тоді, коли задачу розв'язують за допомогою складання виразу чи рівняння. Виконуючи дії, учні коментують їх: що знайдено за допомогою кожної дії. При усному розв'язуванні задачі необов'язково щоразу називати питання плану повністю. Можна практикувати короткі коментарі.

4. Перевірка розв'язання є складовою частиною і характерною рисою математичної діяльності. Перевірити розв'язання задачі — це з'ясувати, правильне воно чи ні. Для вчителя цей процес є засобом виявлення прогалин у знаннях учнів, а в поєднанні з аналізом та оцінкою — засобом виховання інтересу до вивчення математики. Треба поступово виховувати в дітей почуття необхідності самоперевірки, ознайомлювати їх із найбільш доступними прийомами перевірки. З цією метою слід проводити бесіди, в яких аналізувати допущені учнями помилки.

У процесі розв'язування простих задач учні дістають деякі уявлення про структуру задачі. При цьому учителі пропонують деякі спеціальні запитання і завдання, проте вони здебільшого зводяться до вимоги розчленувати задачу на умову і запитання: повторення умови задачі, її запитання; читання задачі і виділення в ній запитання; читання умови задачі про себе, а вголос — тільки запитання; визначення, що в задачі відомо, а що невідомо. Щоб підкреслити основну відмінність складеної задачі від простої, ставлять, наприклад, такі запитання: Чи можна розв'язати задачу однією дією? Чому не можна розв'язати задачу однією дією? Яку маємо задачу — просту чи складену? Такі запитання корисні, але вони не охоплюють усіх компонентів поняття "задача". Роботу в цьому напрямку потрібно урізноманітнити [54, 32].

Учні швидко усвідомлюють, що в арифметичній задачі має бути не менш як два числа. Проте іноді вони забувають про це намагаються розв'язати задачу тільки з одним числовий даним. З цією метою корисно також розглядати задачі з недостатньою кількістю даних.

У роботі над деякими задачами можна вказати прийоми, за допомогою яких з'ясовують, що числові дані задачі перебувають у певних зв'язках, а вибір їх визначається запитаннями. Для задач, пов'язаних різницевим або кратним відношенням, ці прийоми зводяться до постановки запитання: Що в задачі сказано про залежність між числами? Учні відповідають: "У задачі сказано, що друге число на 3 менше, ніж перше". До задач з пропорційними величинами ставлять узагальнені запитання: “Про що можна дізнатись, якщо відомі шлях і швидкість?” тощо [18, 35].

У підручниках для початкових класів переважна більшість задач містить запитання зі словом "скільки", решта задач містить запитання із такими словами та виразами: “Чому дорівнює...?”, “Знайти...”, “Обчислити”. Кількість цих задач з кожним наступним кроком зростає, але за змістом вони належать до практичних задач. Це є однією з причин того, що вимогу задачі учні розуміють як речення, яке починається зі слова "скільки".

Щоб запобігти такому стереотипу, слід іноді перебудовувати запитання. Наприклад, замість "Скільки літрів бензину залишилося?" запитуємо "Яка остача бензину?" або "Знайти остачу бензину", "Чому дорівнює остача бензину?" Узагальнюючим словом тут є "остача". Запитання "Скільки учень заплатив за всю покупку?" можна перебудувати так: "Яка вартість всієї покупки?" або "Обчисліть вартість всієї покупки". Запитання без слова "скільки" пропонує вчитель, а перебудоване запитання, яке містить слово "скільки", формулюють учні [2].

Для розвитку уявлень учнів про структуру задачі дуже корисними є вправи на перетворення та складання задач. Для простих задач основними вправами є добір запитання до умови або добір умови до запитання. До творчих завдань належать: складання задач за даним розв’язком, за малюнком; порівняння задач; перетворення даної задачі в споріднену (в них величини пов'язані однаковою залежністю).

Свідоме вивчення математики і розвиток мислення учнів стимулюється самостійним складанням (конструюванням) математичних задач. При цьому, по-перше, виховується самостійність (діти оперують вивченими об'єктами і фактами математики, тобто розглядають та оцінюють властивості, відмінності і характерні особливості цих об'єктів); по-друге, розвивається їхня творча розумова активність.

Розв'язування даної задачі та складання задачі, оберненої до неї, пов'язано з необхідністю ще раз розглянути залежності між величинами, але під іншим кутом зору. Це сприяє глибшому усвідомленню не тільки залежності між величинами і способу розв'язування задачі, а й її структури.

Конструювання задач молодшими школярами змушує їх використовувати більший обсяг інформації, застосовувати міркування, обернені до тих, що застосовуються при звичайному розв'язуванні задач. Отже, при складанні задач учень застосовує логічні засоби, відмінні від тих, за допомогою яких розв'язуються звичайні задачі, відкриває нові зв'язки між математичними об'єктам. Це розвиває мислення. Але й не можна доводити конструювання задач до навички. Усякий шаблон знищує головне, заради чого ці вправи вводяться: розвивати мислення [23, 14].

Розумова діяльність молодших школярів залежить також від змісту вправ, від послідовності їх виконання. При цьому ступінь оволодіння вміннями розв'язувати певний тип вправ може бути різним. При розв'язуванні математичних задач на аналітичному (початковому) рівні учень вміє відокремлювати істотні умови, вибирати необхідні знання та прийоми для її розв'язання, на наступному, вищому рівні - побудувати оптимальну систему відомих дій для розв'язання задачі; на найвищому рівні – може узагальнити спосіб розв'язування задачі і самостійно скласти задачі різного змісту, що розв'язуються одним способом.

Характеристики

Список файлов ВКР

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7031
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее