114769 (591696), страница 11
Текст из файла (страница 11)
Висновки
Отже, значення математики у розвитку школярів як науки і навчального предмета важко перебільшити. Підтвердженням цього є цілий ряд педагогічної та методичної літератури з проблеми дослідження, серед яких чільне місце займають праці В. Московченка. та Л. Дудки.
Розв’язування задач займає значне місце у початковому курсі математики. При цьому термін «задача» вживається в різних значеннях і передбачає необхідність свідомого пошуку відповідних засобів для досягнення мети, яку добре видно, але яка безпосередньо недосяжна. У психологічному аспекті задача розглядається як свідома мета, що існує в певних умовах, а дії – як процеси, спрямовані на розв'язування задачі.
У навчанні математики задачі становлять специфічний розділ програми, матеріали якого учні мають засвоїти, і виступають як дидактичний засіб навчання, виховання і розвитку школярів. У методиці математики розрізняють математичні та арифметичні задачі. Під математичною задачею розуміють будь-яку вимогу обчислити, побудувати, довести що-небудь, що стосується кількісних відношень і просторових форм, побудованих людським розумом. Арифметичною задачею називають вимогу знайти числове значення деякої величини, якщо дано числові значення інших величин і лінійну залежність, яка пов'язує ці величини як між собою, так і з шуканою. У системі навчання учнів початкових класів загальноосвітньої школи переважають арифметичні задачі. Задачі на побудову, найпростіші доведення, а також завдання логічного порядку займають порівняно незначне місце.
Важливе значення для розв'язування текстових задач у навчальному процесі має ретельний добір навчальних завдань, які мають відповідати певним загально-методичним вимогам: забезпечувати засвоєння учнями програмового матеріалу з математики і, зокрема, формувати в них знання про задачу, її склад і процес розв'язування, вчити використовувати набуті знання в різних ситуаціях. При цьому зміст завдань має відповідати темі уроку і меті вивчення матеріалу, а числові дані – програмовим вимогам; послідовність застосування вправ має сприяти свідомому засвоєнню теоретичних знань і вмінню розв'язувати задачі, розвитку прийомів розумової і творчої діяльності школярів; забезпечувати автоматизацію елементарних дій, з яких складається діяльність при розв'язуванні задач; створювати умови для узагальнення способів діяльності; відповідати логіці й структурі процесу формування вмінь. Кількість задач повинна відповідати психологічним особливостям школярів і бути достатньою для формування певного вміння або навички.
Розв'язування задачі – це процес перетворення її умови, який здійснюється на основі знань з тієї галузі, до якої належить задача, певних логічних правил виводу і особливих правил інтуїтивного (евристичного) характеру. В найбільш загальному плані цей процес складається з таких етапів: аналіз задачі, пошук плану розв'язування; здійснення знайденого плану розв'язування; з'ясування того, що здобутий результат задовольняє вимогу задачі; аналіз розв'язування.
Дидактичні особливості задач на рух пов’язані з принципами навчання, формами організації навчальної роботи та методами навчання. Методика математики враховує дані дидактики, але в їх використанні відображає особливості своєї науки. У кожному з етапів задач на рух відчутні загальні положення дидактики.
Підготовча робота до розв'язування задач на рух передбачає узагальнення уявлень дітей про рух; ознайомлення з новою величиною – швидкістю, розкриття зв'язків між величинами: швидкість, час, відстань. Для узагальнення уявлень дітей про рух корисно проводять спеціальну екскурсію для спостереження за рухом транспорту, після чого організовують спостереження за рухом в умовах класу.
Під час роботи над задачами на рух можна виділити такі основні поняття: зустрічний рух (швидкість зближення; час зближення); рух у протилежних напрямках (швидкість віддалення; час віддалення); рух в одному напрямі (швидкість зближення (віддалення); час зближення (віддалення)); рух за течією чи проти течії (власна швидкість плавзасобу; його швидкість за течією; проти течії; швидкість зближення і час зближення; швидкість віддалення і час віддалення); рух по колу (швидкість зближення (віддалення) під час руху в одному і протилежних напрямках); середня швидкість руху (середня арифметична величина; середня швидкість).
Чималі труднощі під час розв'язування задач на рух у середніх та старших класах визначаються недостатньою роботою над даним типом задач у початковій школі. Однією з причин цього є недостатня сформованість у початкових класах понять про величини (час, відстань, швидкість) та їх пропорційну залежність. У молодших школярів необхідні поняття можливо формувати як на матеріалі чинних підручників початкових класів, так і доповнюючи його задачами, складеними на підґрунті типових задач, призначених для учнів середніх класів.
Проведення експериментального дослідження дало змогу оцінити ефективність використання пропонованої системи задач і простежити процес розвитку уявлень про рух і навичок розв’язування задач даного типу. У процесі використання розробленої нами системи задач на рух в учнів експериментального класу порівняно з контрольним значно підвищився рівень сформованості відповідних знань і умінь, що свідчить про ефективність застосовуваного напрямку роботи та його доцільність у навчанні математики молодших школярів.
Список літератури
-
Бантова М.О. Методика викладання математики в початкових класах. – К.: Вища школа, 1982. – 288 с.
-
Басангова Р.Е. Стимулювання пізнавальної діяльності учнів в ході розв’язування задач // Поч. школа. – 1989. – №1. – С. 40–44.
-
Белова Е.С. Развитие диалога в процессе решения школьниками мыслительных задач // Вопр. психологии. – 1991. – №2. – С. 148–153.
-
Богданович М.Б. Дидактичний матеріал з математики для 3-го класу. – К.: Рад. школа, 1977. – 34 с.
-
Богданович М.Б. Методика розв’язування задач у початковій школі. – К.: Вища школа, 1990. – 183 с.
-
Богданович М.Б., Козак М.В., Король Я.А. Методика викладання математики в початкових класах: Навч. пос. – Тернопіль: Навч. книга – Богдан, 2001. – 368 с.
-
Богданович М.В. Математика: Підручник для 4 кл. чотириріч. поч. шк. – К.: Освіта, 1994. – 226 с.
-
Богданович М.В. Урок математики в початковій школі: Пос. для вчителя. – К.: Рад. школа, 1990. – 192 с.
-
Василенко І.З. Методика викладання математики в початкових класах. – К.: Просвіта, 1971. – 376 с.
-
Возрастные возможности усвоения знаний / Под. ред. Д.Б. Эльконина, В.В. Давыдова. – М.: Педагогика, 1966. – 232 с.
-
Вопросы дидактики и психологии начального обучения / Под. ред. Б.Г. Ананьева. – Л.: Лен. НИИ пед. АПН РСФСР, 1959. – 98 с.
-
Газдун М.І. Як учити молодших школярів розв’язувати задачі // Поч. школа. – 1988. – №11. – С. 70–72.
-
Глушков И.К. Дифференцированная работа над задачами // Нач. школа. – 1985. – №2. – С. 34–35.
-
Гнеденко Б.В. Развитие мышления и речи при изучении математики // Матем. в школе. – 1991. – 31. – С. 3–9.
-
Гора Т., Логачевська С. Диференційований підхід до розв'язування текстових задач // Поч. школа. – 2002. – №1. – С. 17–22.
-
Друзь Б.Г. Творчі вправи з математики для початкових класів. – К.: Рад. школа, 1988. – 144 с.
-
Заїка А., Богданович М. Учням про задачу і процес її розв’язування // Початкова школа. – 2000. – №11. – С. 28–29.
-
Занков Л.В. Беседы с учителем: Вопросы обучения в начальных классах. – М.: Педагогика, 1970. – 142 с.
-
Захарова А.М. Розвивальне навчання математики в початковій школі // Психол. і педагогіка. – 2000. – №1. – С. 21–27.
-
Истомина Н.Б., Шикова В.Н. Формирование умений решать задачи различными способами // Нач. школа. – 1985. – №9. – С. 50–54.
-
Король Я.А. Математика в початкових класах: Культура усного і писемного мовлення. – Тернопіль: Навч. книга – Богдан, 2000. – 160 с.
-
Король Я.А. Піднесення культури математичної мови // Поч. школа. – 1995. – №1. – С. 11–12.
-
Король Я.А. Практикум з методики викладання математики в початкових класах. – Тернопіль: Мандрівець, 1998. – 136 с.
-
Король Я.А. Розв’язування текстових задач різними способами // Актуальні проблеми розбудови національної освіти. Ч. ІІІ. – К.-Херсон, 1997. – С. 76–78.
-
Король Я.А. Формування практичних умінь і навичок на уроках математики. – Тернопіль: Навч. книга – Богдан, 2000. – 136 с.
-
Король Я.А., Чайка Н.М. Вдосконалення методики роботи над задачами геометричного змісту // Поч. школа. – 1995. – №10–11. – С. 19–22.
-
Корчевська О.П., Козак М.В. Робота над задачами в 4 класі. Поурочні розробки. – Тернопіль: Астон, 2002. – 204 с.
-
Кочина Л., Листопад Н. Математика: навчальні програми для чотирирічної початкової школи // Поч. школа. – 2001. – №7. – С. 17–20.
-
Кочина Л.П., Листопад Н.П. Математика, 4 клас – К.: Літера ЛТД, 2004. – 176 с.
-
Крутецкий В.А. Психология математических способностей школьников. – М.: Просвещение, 1968. – 204 с.
-
Кухар В.М., Паюл В.М. Скорочений запис задач // Початкова школа. – 1978. – №4. – С. 44–48.
-
Литовченко З.М. Карапузова Н.Д. Культура усного мовлення на уроках математики // Поч. школа. – 1984. – №2. – С. 31–34.
-
Маркова А.А. Формирование мотивации обучения в школьном возрасте. – М.: Педагогика, 1983. – 124 с.
-
Матюша І.К. Гуманізація виховання і навчання в загальноосвітній школі. – К.: Просвіта, 1995. – 122 с.
-
Менчинская Н.А., Моро М.И. Вопросы методики и психологии обучения арифметике в начальных классах. – М.: Просвещение, 1965. – 268 с.
-
Методы начального обучения математике. Сб.статей / Под ред. Л.Н. Скаткина. – М.: Просвещение, 1975. – 284 с.
-
Методика начального обучения математике / Под общ. ред. А.А. Столяра, В.Л. Дрозда. – Мн.: Асвета, 1988. – 268 с.
-
Методика начального обучения математике / Под ред. Л.Н. Скаткина. – М.: Просвещение, 1972. – 340 с.
-
Моро М.И. Карточки с арифметическими задачами для 3-го класса. – М.: Просвещение, 1972. – 36 с.
-
Моро М.И., Пишкало А.М. Методика навчання математики в 1–3 класах. – К.: Рад. школа, 1979. – 376 с.
-
Московченко В., Дудко Л. Розв’язування математичних задач на рух // Початкова школа. – 2000. – №11. – С. 25–27.
-
Московченко В., Дудко Л. Розв’язування математичних задач на рух // Початкова школа. – 2000. – №12. – С. 14–15.















